devela/num/rand/
xabc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// devela::num::rand::xabc
//
//!
//

use crate::{ConstDefault, Own};

/// X ABC Algorithm Random Number Generator for 8-bit Devices.
///
/// It has a 32-bit state and generates 8-bit numbers.
///
/// This is a small PRNG, experimentally verified to have at least a 50 million
/// byte period by generating 50 million bytes and observing that there were no
/// overapping sequences and repeats.
///
/// This generator passes serial correlation, entropy, Monte Carlo Pi value,
/// arithmetic mean, and many other statistical tests. This generator may have a
/// period of up to 2^32, but this has not been verified.
///
/// By XORing 3 bytes into the a, b, and c registers, you can add in entropy
/// from an external source easily.
///
/// This generator is free to use, but is not suitable for cryptography due to
/// its short period (by cryptographic standards) and simple construction.
/// No attempt was made to make this generator suitable for cryptographic use.
///
/// Due to the use of a constant counter, the generator should be resistant to
/// latching up. A significant performance gain is had in that the x variable is
/// only ever incremented.
///
/// Only 4 bytes of ram are needed for the internal state, and generating a byte
/// requires 3 XORs, 2 ADDs, one bit shift right, and one increment. Difficult
/// or slow operations like multiply, etc were avoided for maximum speed on
/// ultra low power devices.
///
/// It has a period of 487,780,609 from a zeroed state.
///
/// # License
/// This algorithm was originally openly published in December 2011 by user
/// *EternityForest* in [Electro-Tech-Online.com][link].
///
/// [link]: https://www.electro-tech-online.com/threads/ultra-fast-pseudorandom-number-generator-for-8-bit.124249/
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Xabc {
    a: u8,
    b: u8,
    c: u8,
    x: u8,
}

impl Default for Xabc {
    fn default() -> Self {
        Self::DEFAULT
    }
}
impl ConstDefault for Xabc {
    const DEFAULT: Self = Self::new(Self::DEFAULT_SEED);
}

// private associated items
impl Xabc {
    const DEFAULT_SEED: [u8; 3] = [0xDE, 0xFA, 0x17];
}

impl Xabc {
    /// Returns a seeded `Xabc` generator from the given 3 × 8-bit seeds.
    #[must_use]
    pub const fn new(seeds: [u8; 3]) -> Self {
        let a = seeds[0];
        let b = seeds[1];
        let c = seeds[2];
        let x = 1;
        let a = a ^ c ^ x;
        let b = b.wrapping_add(a);
        let c = c.wrapping_add(b >> 1) ^ a;
        Self { a, b, c, x }
    }

    /// Reseeds the generator from the given 3 × 8-bit seeds.
    pub fn reseed(&mut self, seeds: [u8; 3]) {
        // XOR new entropy into key state
        self.a ^= seeds[0];
        self.b ^= seeds[1];
        self.c ^= seeds[2];

        self.x += 1;
        self.a = self.a ^ self.c ^ self.x;
        self.b = self.b.wrapping_add(self.a);
        self.c = self.c.wrapping_add(self.b >> 1) ^ self.a;
    }

    /// Returns the current random `u8`.
    #[must_use]
    pub const fn current_u8(&self) -> u8 {
        self.c
    }

    /// Returns the next random `u8`.
    #[must_use]
    pub fn next_u8(&mut self) -> u8 {
        // x is incremented every round and is not affected by any other variable
        self.x = self.x.wrapping_add(1);
        // note the mix of addition and XOR
        self.a = self.a ^ self.c ^ self.x;
        // And the use of very few instructions
        self.b = self.b.wrapping_add(self.a);
        // the right shift is to ensure that high-order bits from b can affect
        // low order bits of other variables
        self.c = self.c.wrapping_add(self.b >> 1) ^ self.a;
        self.c
    }

    /// Returns a copy of the next new random state.
    #[must_use]
    pub const fn next_state(&self) -> Self {
        let [mut a, mut b, mut c, mut x] = [self.a, self.b, self.c, self.x];
        x += 1;
        a = a ^ c ^ x;
        b = b.wrapping_add(a);
        c = c.wrapping_add(b >> 1) ^ a;
        Self { a, b, c, x }
    }

    /// Returns both the next random state and the `u8` value.
    pub const fn own_next_u8(self) -> Own<Self, u8> {
        let s = self.next_state();
        let v = s.current_u8();
        Own::new(s, v)
    }
}

/// # Extra constructors
impl Xabc {
    /// Returns a seeded `Xabc` generator from the given 3 × 8-bit seeds.
    ///
    /// This is an alias of [`new`][Self#method.new].
    pub const fn new3_u8(seeds: [u8; 3]) -> Self {
        Self::new(seeds)
    }
}

#[cfg(feature = "dep_rand_core")]
#[cfg_attr(feature = "nightly_doc", doc(cfg(feature = "dep_rand_core")))]
mod impl_rand {
    use super::Xabc;
    use crate::_dep::rand_core::{Error, RngCore, SeedableRng};

    impl RngCore for Xabc {
        /// Returns the next 4 × random `u8` combined as a single `u32`.
        fn next_u32(&mut self) -> u32 {
            u32::from_le_bytes([self.next_u8(), self.next_u8(), self.next_u8(), self.next_u8()])
        }

        /// Returns the next 8 × random `u8` combined as a single `u64`.
        fn next_u64(&mut self) -> u64 {
            u64::from_le_bytes([
                self.next_u8(),
                self.next_u8(),
                self.next_u8(),
                self.next_u8(),
                self.next_u8(),
                self.next_u8(),
                self.next_u8(),
                self.next_u8(),
            ])
        }

        fn fill_bytes(&mut self, dest: &mut [u8]) {
            for byte in dest {
                *byte = self.next_u8();
            }
        }

        fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            self.fill_bytes(dest);
            Ok(())
        }
    }

    impl SeedableRng for Xabc {
        type Seed = [u8; 3];

        fn from_seed(seed: Self::Seed) -> Self {
            Self::new(seed)
        }
    }
}