devela/num/geom/linear/
affine.rs

1// devela::num::geom::linear::affine
2//
3//! Defines [`Affine`].
4//
5// > https://chatgpt.com/c/67bcf245-e818-8007-8453-eab0292bef86
6//
7// TOC
8// -
9// -
10// - compute_minor_determinant
11//
12// TODO
13// - constructor
14// - validator of dimensions
15// - validated constructors
16//
17// - macro to implement the D transform… for f32 or f64, …
18//
19// - up to 8x8 matrices (UNDERSTAND for affine) calculate a list of which ones…
20//
21// IDEA: could this file be also a script?
22
23use crate::Matrix;
24
25/// An affine transformation in `D`-dimensional space.
26#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
27pub struct Affine<T, const D: usize, const LEN: usize> {
28    arr: [T; LEN],
29}
30impl<T, const D: usize, const LEN: usize> Affine<T, D, LEN> {
31    ///
32    pub fn new(arr: [T; LEN]) -> Self {
33        Self::validate_d_len();
34        Self { arr }
35    }
36    // MAYBE? PROBLEM:
37    // pub fn new_2d(arr: [T; 2*3]) -> Affine<T, 2, {2*3}> { Self { arr } }
38
39    const fn validate_d_len() {
40        assert!(LEN == D * (D + 1), "Invalid array length for given dimension");
41    }
42}
43
44impl<const D: usize, const LEN: usize> Affine<f64, D, LEN> {
45    /// Computes the array index for a matrix element (row, col)
46    #[inline(always)]
47    const fn idx(row: usize, col: usize) -> usize {
48        row * (D + 1) + col
49    }
50    /// Access a linear transformation element
51    #[inline(always)]
52    pub const fn at(&self, row: usize, col: usize) -> f64 {
53        self.arr[Self::idx(row, col)]
54    }
55    /// Mutably access a linear transformation element
56    #[inline(always)]
57    pub fn at_mut(&mut self, row: usize, col: usize) -> &mut f64 {
58        &mut self.arr[Self::idx(row, col)]
59    }
60    /// Access a translation component
61    #[inline(always)]
62    pub fn translation(&self, row: usize) -> f64 {
63        self.arr[Self::idx(row, D)]
64    }
65    /// Mutably access a translation component
66    #[inline(always)]
67    pub fn translation_mut(&mut self, row: usize) -> &mut f64 {
68        &mut self.arr[Self::idx(row, D)]
69    }
70
71    /// Computes the determinant of the Jacobian (D×D linear transformation).
72    // RETHINK: duplicating Matrix::determinant_unchecked, but what about the data?
73    #[rustfmt::skip]
74    pub fn determinant(&self) -> f64 {
75        let s = self;
76        match D {
77            1 => s.at(0, 0),
78            2 => s.at(0, 0) * s.at(1, 1) - s.at(0, 1) * s.at(1, 0),
79            3 => {
80                  s.at(0, 0) * (s.at(1, 1) * s.at(2, 2) - s.at(1, 2) * s.at(2, 1))
81                - s.at(0, 1) * (s.at(1, 0) * s.at(2, 2) - s.at(1, 2) * s.at(2, 0))
82                + s.at(0, 2) * (s.at(1, 0) * s.at(2, 1) - s.at(1, 1) * s.at(2, 0))
83            }
84            _ => {
85                let mut buf = [0.0; {8*8}];
86                Matrix::<f64, D, D, LEN>::submatrix_determinant(D, &self.arr, &mut buf)
87            }
88        }
89    }
90}
91
92// TEMP: STANDALONE
93// ///
94// const fn compute_minor_determinant<const LEN: usize>(
95//     n: usize,
96//     matrix: &[f64],
97//     minor_buffer: &mut [f64],
98// ) -> f64 {
99//     iif![n == 1; return matrix[0]];
100//     iif![n == 2; return matrix[0] * matrix[3] - matrix[1] * matrix[2]];
101//     let (mut det, mut col) = (0.0, 0);
102//     while col < n {
103//         let minor_size = (n - 1) * (n - 1);
104//         extract_minor(n, 0, col, matrix, Slice::range_to_mut(minor_buffer, minor_size));
105//         let mut minor_copy = [0.0; LEN];
106//         let mut i = 0;
107//         while i < minor_size {
108//             minor_copy[i] = minor_buffer[i];
109//             i += 1;
110//         }
111//         let minor_det = compute_minor_determinant::<LEN>(
112//             n - 1,
113//             Slice::range_to(&minor_copy, minor_size),
114//             minor_buffer,
115//         );
116//         det += sign(col) * matrix[col] * minor_det;
117//         col += 1;
118//     }
119//     det
120// }
121//
122// /// Extracts an (N-1)x(N-1) minor matrix into `buffer`, using a **flattened slice**.
123// const fn extract_minor(n: usize, row: usize, col: usize, matrix: &[f64], buffer: &mut [f64]) {
124//     let (mut idx, mut r) = (0, 0);
125//     while r < n {
126//         iif![r == row; { r += 1; continue }];
127//         let mut c = 0;
128//         while c < n {
129//             iif![c == col; { c += 1; continue }];
130//             buffer[idx] = matrix[r * n + c];
131//             idx += 1;
132//             c += 1;
133//         }
134//         r += 1;
135//     }
136// }
137//
138// /// Returns the sign (-1 or 1) for alternating determinant sums.
139// const fn sign(i: usize) -> f64 {
140//     iif![i % 2 == 0; 1.0; -1.0]
141// }
142
143// TEMP moved to matrix
144// // -----
145//
146// /// Row-major storage matrix
147// pub struct Matrix<T, const ROWS: usize, const COLS: usize, const LEN: usize> {
148//     data: [T; LEN],
149// }
150//
151// // Generic struct only requires `T: Copy`
152// impl<T: Copy, const ROWS: usize, const COLS: usize, const LEN: usize> Matrix<T, ROWS, COLS, LEN> {
153//     /// Returns an immutable reference to the element at (row, col)
154//     #[inline(always)]
155//     pub const fn at(&self, row: usize, col: usize) -> T {
156//         self.data[row * COLS + col]
157//     }
158//
159//     /// Returns a mutable reference to the element at (row, col)
160//     #[inline(always)]
161//     pub fn at_mut(&mut self, row: usize, col: usize) -> &mut T {
162//         &mut self.data[row * COLS + col]
163//     }
164// }
165//
166// // Specialized implementation for `f64`
167// impl<const D: usize, const LEN: usize> Matrix<f64, D, D, LEN> {
168//     /// Computes the determinant of the square matrix.
169//     pub const fn determinant(&self) -> f64 {
170//         match D {
171//             1 => self.at(0, 0),
172//             2 => self.at(0, 0) * self.at(1, 1) - self.at(0, 1) * self.at(1, 0),
173//             3 => {
174//                 self.at(0, 0) * (self.at(1, 1) * self.at(2, 2) - self.at(1, 2) * self.at(2, 1))
175//                     - self.at(0, 1)
176//                         * (self.at(1, 0) * self.at(2, 2) - self.at(1, 2) * self.at(2, 0))
177//                     + self.at(0, 2)
178//                         * (self.at(1, 0) * self.at(2, 1) - self.at(1, 1) * self.at(2, 0))
179//             }
180//             _ => {
181//                 let mut minor_matrix = [0.0; 64]; // Supports up to 8×8 matrices
182//                 Self::minor_determinant(D, &self.data, &mut minor_matrix)
183//             }
184//         }
185//     }
186//
187//     /// Computes the determinant of a square matrix using Laplace expansion.
188//     ///
189//     /// This method is **only valid for square matrices** of size `dim × dim`
190//     /// and is intended for cases where `dim > 3`.
191//     ///
192//     /// ### How It Works:
193//     /// - Expands along the first row using minors (submatrices).
194//     /// - Recursively computes determinants of `(dim-1)×(dim-1)` matrices.
195//     /// - Uses `minor_buffer` to avoid extra allocations.
196//     ///
197//     /// ### Buffer Requirements:
198//     /// - `minor_buffer` must have **at least** `(dim-1)² + (dim-2)²` elements.
199//     /// - This ensures enough space for the current minor and recursive calls.
200//     /// - A **debug assertion** checks this before execution.
201//     ///
202//     /// ### Complexity:
203//     /// - **O(dim!)** (factorial time complexity) due to recursive expansion.
204//     /// - Should only be used for **small matrices (`dim ≤ 8`)**.
205//     ///
206//     /// # Panics
207//     /// Panics in debug mode if `minor_buffer` is too small.
208//     pub const fn minor_determinant(dim: usize, matrix: &[f64], minor_buffer: &mut [f64]) -> f64 {
209//         iif![dim == 1; return matrix[0]];
210//         iif![dim == 2; return matrix[0] * matrix[3] - matrix[1] * matrix[2]];
211//
212//         let required_size = (dim - 1) * (dim - 1) + (dim - 2) * (dim - 2);
213//         debug_assert!(minor_buffer.len() >= required_size, "minor_buffer is too small");
214//
215//         let (mut determinant, mut col_idx) = (0.0, 0);
216//         while col_idx < dim {
217//             let minor_len = (dim - 1) * (dim - 1);
218//             // 1. Split buffer into current level & next (for recursion)
219//             let (minor_matrix, next_minor_buffer) = minor_buffer.split_at_mut(minor_len);
220//             // 2. Extract the minor submatrix
221//             Self::minor_matrix(dim, 0, col_idx, matrix, minor_matrix);
222//             // 3. Compute determinant recursively
223//             let sub_det = Self::minor_determinant(dim - 1, minor_matrix, next_minor_buffer);
224//             determinant += Self::parity_sign(col_idx) * matrix[col_idx] * sub_det;
225//             col_idx += 1;
226//         }
227//         determinant
228//     }
229//
230//     /// Extracts a `(D-1)x(D-1)` minor matrix by removing the given row and column.
231//     ///
232//     /// - `n`: Matrix dimension.
233//     /// - `row`, `col`: The row and column to exclude.
234//     /// - `matrix`: Source matrix in row-major order.
235//     /// - `buffer`: Target buffer to store the minor matrix.
236//     ///
237//     /// Used internally by determinant computation.
238//     pub const fn minor_matrix(
239//         n: usize,
240//         row: usize,
241//         col: usize,
242//         matrix: &[f64],
243//         buffer: &mut [f64],
244//     ) {
245//         let (mut idx, mut r) = (0, 0);
246//         while r < n {
247//             iif![r == row; { r += 1; continue; }];
248//             let mut c = 0;
249//             while c < n {
250//                 iif![c == col; { c += 1; continue; }];
251//                 buffer[idx] = matrix[r * n + c];
252//                 idx += 1;
253//                 c += 1;
254//             }
255//             r += 1;
256//         }
257//     }
258//
259//     /// Returns alternating ±1 based on the column index for determinant expansion.
260//     ///
261//     /// - Returns `1.0` for even indices.
262//     /// - Returns `-1.0` for odd indices.
263//     ///
264//     /// Used for Laplace expansion in determinant calculation.
265//     pub const fn parity_sign(i: usize) -> f64 {
266//         if i % 2 == 0 {
267//             1.0
268//         } else {
269//             -1.0
270//         }
271//     }
272// }