devela/num/geom/linear/affine.rs
1// devela::num::geom::linear::affine
2//
3//! Defines [`Affine`].
4//
5// > https://chatgpt.com/c/67bcf245-e818-8007-8453-eab0292bef86
6//
7// TOC
8// -
9// -
10// - compute_minor_determinant
11//
12// TODO
13// - constructor
14// - validator of dimensions
15// - validated constructors
16//
17// - macro to implement the D transform… for f32 or f64, …
18//
19// - up to 8x8 matrices (UNDERSTAND for affine) calculate a list of which ones…
20//
21// IDEA: could this file be also a script?
22
23use crate::Matrix;
24
25/// An affine transformation in `D`-dimensional space.
26#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
27pub struct Affine<T, const D: usize, const LEN: usize> {
28 arr: [T; LEN],
29}
30impl<T, const D: usize, const LEN: usize> Affine<T, D, LEN> {
31 ///
32 pub fn new(arr: [T; LEN]) -> Self {
33 Self::validate_d_len();
34 Self { arr }
35 }
36 // MAYBE? PROBLEM:
37 // pub fn new_2d(arr: [T; 2*3]) -> Affine<T, 2, {2*3}> { Self { arr } }
38
39 const fn validate_d_len() {
40 assert!(LEN == D * (D + 1), "Invalid array length for given dimension");
41 }
42}
43
44impl<const D: usize, const LEN: usize> Affine<f64, D, LEN> {
45 /// Computes the array index for a matrix element (row, col)
46 #[inline(always)]
47 const fn idx(row: usize, col: usize) -> usize {
48 row * (D + 1) + col
49 }
50 /// Access a linear transformation element
51 #[inline(always)]
52 pub const fn at(&self, row: usize, col: usize) -> f64 {
53 self.arr[Self::idx(row, col)]
54 }
55 /// Mutably access a linear transformation element
56 #[inline(always)]
57 pub fn at_mut(&mut self, row: usize, col: usize) -> &mut f64 {
58 &mut self.arr[Self::idx(row, col)]
59 }
60 /// Access a translation component
61 #[inline(always)]
62 pub fn translation(&self, row: usize) -> f64 {
63 self.arr[Self::idx(row, D)]
64 }
65 /// Mutably access a translation component
66 #[inline(always)]
67 pub fn translation_mut(&mut self, row: usize) -> &mut f64 {
68 &mut self.arr[Self::idx(row, D)]
69 }
70
71 /// Computes the determinant of the Jacobian (D×D linear transformation).
72 // RETHINK: duplicating Matrix::determinant_unchecked, but what about the data?
73 #[rustfmt::skip]
74 pub fn determinant(&self) -> f64 {
75 let s = self;
76 match D {
77 1 => s.at(0, 0),
78 2 => s.at(0, 0) * s.at(1, 1) - s.at(0, 1) * s.at(1, 0),
79 3 => {
80 s.at(0, 0) * (s.at(1, 1) * s.at(2, 2) - s.at(1, 2) * s.at(2, 1))
81 - s.at(0, 1) * (s.at(1, 0) * s.at(2, 2) - s.at(1, 2) * s.at(2, 0))
82 + s.at(0, 2) * (s.at(1, 0) * s.at(2, 1) - s.at(1, 1) * s.at(2, 0))
83 }
84 _ => {
85 let mut buf = [0.0; {8*8}];
86 Matrix::<f64, D, D, LEN>::submatrix_determinant(D, &self.arr, &mut buf)
87 }
88 }
89 }
90}
91
92// TEMP: STANDALONE
93// ///
94// const fn compute_minor_determinant<const LEN: usize>(
95// n: usize,
96// matrix: &[f64],
97// minor_buffer: &mut [f64],
98// ) -> f64 {
99// iif![n == 1; return matrix[0]];
100// iif![n == 2; return matrix[0] * matrix[3] - matrix[1] * matrix[2]];
101// let (mut det, mut col) = (0.0, 0);
102// while col < n {
103// let minor_size = (n - 1) * (n - 1);
104// extract_minor(n, 0, col, matrix, Slice::range_to_mut(minor_buffer, minor_size));
105// let mut minor_copy = [0.0; LEN];
106// let mut i = 0;
107// while i < minor_size {
108// minor_copy[i] = minor_buffer[i];
109// i += 1;
110// }
111// let minor_det = compute_minor_determinant::<LEN>(
112// n - 1,
113// Slice::range_to(&minor_copy, minor_size),
114// minor_buffer,
115// );
116// det += sign(col) * matrix[col] * minor_det;
117// col += 1;
118// }
119// det
120// }
121//
122// /// Extracts an (N-1)x(N-1) minor matrix into `buffer`, using a **flattened slice**.
123// const fn extract_minor(n: usize, row: usize, col: usize, matrix: &[f64], buffer: &mut [f64]) {
124// let (mut idx, mut r) = (0, 0);
125// while r < n {
126// iif![r == row; { r += 1; continue }];
127// let mut c = 0;
128// while c < n {
129// iif![c == col; { c += 1; continue }];
130// buffer[idx] = matrix[r * n + c];
131// idx += 1;
132// c += 1;
133// }
134// r += 1;
135// }
136// }
137//
138// /// Returns the sign (-1 or 1) for alternating determinant sums.
139// const fn sign(i: usize) -> f64 {
140// iif![i % 2 == 0; 1.0; -1.0]
141// }
142
143// TEMP moved to matrix
144// // -----
145//
146// /// Row-major storage matrix
147// pub struct Matrix<T, const ROWS: usize, const COLS: usize, const LEN: usize> {
148// data: [T; LEN],
149// }
150//
151// // Generic struct only requires `T: Copy`
152// impl<T: Copy, const ROWS: usize, const COLS: usize, const LEN: usize> Matrix<T, ROWS, COLS, LEN> {
153// /// Returns an immutable reference to the element at (row, col)
154// #[inline(always)]
155// pub const fn at(&self, row: usize, col: usize) -> T {
156// self.data[row * COLS + col]
157// }
158//
159// /// Returns a mutable reference to the element at (row, col)
160// #[inline(always)]
161// pub fn at_mut(&mut self, row: usize, col: usize) -> &mut T {
162// &mut self.data[row * COLS + col]
163// }
164// }
165//
166// // Specialized implementation for `f64`
167// impl<const D: usize, const LEN: usize> Matrix<f64, D, D, LEN> {
168// /// Computes the determinant of the square matrix.
169// pub const fn determinant(&self) -> f64 {
170// match D {
171// 1 => self.at(0, 0),
172// 2 => self.at(0, 0) * self.at(1, 1) - self.at(0, 1) * self.at(1, 0),
173// 3 => {
174// self.at(0, 0) * (self.at(1, 1) * self.at(2, 2) - self.at(1, 2) * self.at(2, 1))
175// - self.at(0, 1)
176// * (self.at(1, 0) * self.at(2, 2) - self.at(1, 2) * self.at(2, 0))
177// + self.at(0, 2)
178// * (self.at(1, 0) * self.at(2, 1) - self.at(1, 1) * self.at(2, 0))
179// }
180// _ => {
181// let mut minor_matrix = [0.0; 64]; // Supports up to 8×8 matrices
182// Self::minor_determinant(D, &self.data, &mut minor_matrix)
183// }
184// }
185// }
186//
187// /// Computes the determinant of a square matrix using Laplace expansion.
188// ///
189// /// This method is **only valid for square matrices** of size `dim × dim`
190// /// and is intended for cases where `dim > 3`.
191// ///
192// /// ### How It Works:
193// /// - Expands along the first row using minors (submatrices).
194// /// - Recursively computes determinants of `(dim-1)×(dim-1)` matrices.
195// /// - Uses `minor_buffer` to avoid extra allocations.
196// ///
197// /// ### Buffer Requirements:
198// /// - `minor_buffer` must have **at least** `(dim-1)² + (dim-2)²` elements.
199// /// - This ensures enough space for the current minor and recursive calls.
200// /// - A **debug assertion** checks this before execution.
201// ///
202// /// ### Complexity:
203// /// - **O(dim!)** (factorial time complexity) due to recursive expansion.
204// /// - Should only be used for **small matrices (`dim ≤ 8`)**.
205// ///
206// /// # Panics
207// /// Panics in debug mode if `minor_buffer` is too small.
208// pub const fn minor_determinant(dim: usize, matrix: &[f64], minor_buffer: &mut [f64]) -> f64 {
209// iif![dim == 1; return matrix[0]];
210// iif![dim == 2; return matrix[0] * matrix[3] - matrix[1] * matrix[2]];
211//
212// let required_size = (dim - 1) * (dim - 1) + (dim - 2) * (dim - 2);
213// debug_assert!(minor_buffer.len() >= required_size, "minor_buffer is too small");
214//
215// let (mut determinant, mut col_idx) = (0.0, 0);
216// while col_idx < dim {
217// let minor_len = (dim - 1) * (dim - 1);
218// // 1. Split buffer into current level & next (for recursion)
219// let (minor_matrix, next_minor_buffer) = minor_buffer.split_at_mut(minor_len);
220// // 2. Extract the minor submatrix
221// Self::minor_matrix(dim, 0, col_idx, matrix, minor_matrix);
222// // 3. Compute determinant recursively
223// let sub_det = Self::minor_determinant(dim - 1, minor_matrix, next_minor_buffer);
224// determinant += Self::parity_sign(col_idx) * matrix[col_idx] * sub_det;
225// col_idx += 1;
226// }
227// determinant
228// }
229//
230// /// Extracts a `(D-1)x(D-1)` minor matrix by removing the given row and column.
231// ///
232// /// - `n`: Matrix dimension.
233// /// - `row`, `col`: The row and column to exclude.
234// /// - `matrix`: Source matrix in row-major order.
235// /// - `buffer`: Target buffer to store the minor matrix.
236// ///
237// /// Used internally by determinant computation.
238// pub const fn minor_matrix(
239// n: usize,
240// row: usize,
241// col: usize,
242// matrix: &[f64],
243// buffer: &mut [f64],
244// ) {
245// let (mut idx, mut r) = (0, 0);
246// while r < n {
247// iif![r == row; { r += 1; continue; }];
248// let mut c = 0;
249// while c < n {
250// iif![c == col; { c += 1; continue; }];
251// buffer[idx] = matrix[r * n + c];
252// idx += 1;
253// c += 1;
254// }
255// r += 1;
256// }
257// }
258//
259// /// Returns alternating ±1 based on the column index for determinant expansion.
260// ///
261// /// - Returns `1.0` for even indices.
262// /// - Returns `-1.0` for odd indices.
263// ///
264// /// Used for Laplace expansion in determinant calculation.
265// pub const fn parity_sign(i: usize) -> f64 {
266// if i % 2 == 0 {
267// 1.0
268// } else {
269// -1.0
270// }
271// }
272// }