devela/num/power.rs
1//
2//
3//! The triangle of power.
4//
5// TOC
6// - struct Tp
7// - impls
8// - docs
9//
10// TODO
11// - MAKE TESTS
12// - finish integers
13// - check formula of apow ? is it e times pth root of p? or eth rooth of p?
14//
15// - review documentation
16// - Distinguishing Rotation Groups from Operand Order
17// - Static Operand Order: Defines how a function is structured (bep, pbe, etc.) 6 total
18// - Rotation Group (lane): Defines which 3-function cycle a function belongs to. 2 total
19// - Cycle Shift Order: Defines the modulo-3 operand cycling. 2 total: shr and shl
20//
21// Make a list of 6 answers of the form: (use the right letters, b e p)
22// - The root is the answer to: Which number should we raise to the power b to get c ? (a=c√b),
23// - the log is the answer to: To which power should we raise the number a to get c ? (b=logac).
24// - pow:
25// - apow:
26// - aroot:
27// - alog:
28//
29//
30// IMPROVE
31// - I'd like to clarify the first doc sentence of the functions. specially the anti- ones
32// - maybe have 2 alternative ways of defining them, a heading and a subheading...
33//
34// NOTE: CHAT: https://chatgpt.com/c/67be2874-162c-8007-840c-681d8ce6979e
35
36#![allow(clippy::empty_line_after_doc_comments, unused)]
37
38use crate::unwrap;
39#[cfg(_float··)]
40use crate::ExtFloat;
41#[cfg(_int··)]
42use crate::Int;
43
44/// **The Triangle of Power**
45///
46/// This struct formalizes the six fundamental transformations that interrelate exponentiation,
47/// roots, and logarithms. These operations are not independent but form a structured system of
48/// shifts and rotations, governed by underlying symmetries. Each function belongs to one of two
49/// interwoven three-function cycles, with structured transformations that preserve relationships
50/// between base, exponent, and power.
51///
52/// The system follows a modular shift structure, where functions transition through well-defined
53/// rotations (`shr` and `shl`) or switch between cycles through selective shifts. This framework
54/// does not introduce new computations but instead exposes the inherent structure of scaling
55/// operations, making explicit the relationships that underlie exponentiation.
56///
57//
58// NOTE: ↑ very good
59// CHECK ↓
60//
61/// ## Structure and Transformations
62///
63/// The six operations are arranged into two distinct three-function cycles, each forming a closed loop under cyclic shifts.
64/// Functions transition within their cycle using forward (`shr`) or backward (`shl`) shifts, while selective shifts allow
65/// movement between cycles. These relationships define the full space of exponentiation-like transformations.
66///
67/// ### **Rotation Groups**
68///
69/// Each function belongs to one of two interwoven three-function cycles:
70///
71/// - **Exponentiation-Logarithm Cycle**: `pow → apow → log → pow`
72/// - **Root-Antilogarithm Cycle**: `root → aroot → alog → root`
73///
74/// Within each cycle, functions are related by **modular shift transformations**:
75///
76/// | Function | Static Operand Order | Forward Shift (`shr`) | Backward Shift (`shl`) | Selective Shift |
77/// |-------------|----------------|------------------|------------------|------------------|
78/// | `pow` | `(bep)` | `apow (epb)` | `log (pbe)` | `root (peb)` |
79/// | `apow` | `(epb)` | `log (pbe)` | `pow (bep)` | `aroot (bpe)` |
80/// | `log` | `(pbe)` | `alog (ebp)` | `pow (bep)` | `apow (epb)` |
81/// | `root` | `(bpe)` | `aroot (peb)` | `alog (ebp)` | `apow (epb)` |
82/// | `aroot` | `(peb)` | `alog (ebp)` | `root (bpe)` | `pow (bep)` |
83/// | `alog` | `(ebp)` | `pow (bep)` | `root (bpe)` | `aroot (bpe)` |
84///
85///
86/// ### **Shift Transformations**
87///
88/// Each function is connected to others by structured shifts:
89///
90/// - **Cycle shifts (`shr`, `shl`)** maintain movement within the same rotation group.
91/// - **Selective shifts (`X << Y == Z >>`) enable transitions between cycles.**
92///
93/// These shifts behave modularly, ensuring all transformations preserve valid operand relationships.
94///
95/// By formalizing these relationships, this struct provides a systematic way to express, explore, and manipulate
96/// exponentiation-based transformations, making explicit the structure that underlies their behavior.
97
98
99// # Meta operations
100//
101// Operations can be classified by **rearranging** their three operands
102// using the **⊕ meta-operator**:
103//
104// - `pow = base ⊕ exponent = power` (bep)
105// - `apow = exponent ⊕ power = base` (epb)
106// - `root = power ⊕ exponent = base` (peb)
107// - `aroot = base ⊕ power = exponent` (bpe)
108// - `log = power ⊕ base = exponent` (pbe)
109// - `alog = exponent ⊕ base = power` (ebp)
110
111pub struct Tp<T>(T);
112
113/* impls */
114
115macro_rules! impl_tp {
116 () => {
117 impl_tp![int i32|"_int_i32"];
118 impl_tp![float f32|"_float_f32", f64|"_float_f64"];
119 };
120 (float $($T:ty | $feat:literal),+) => { $( impl_tp![@float $T|$feat]; )+ };
121 (int $($T:ty | $feat:literal),+) => { $( impl_tp![@int $T|$feat]; )+ };
122 (@float $T:ty | $feat:literal) => {
123 impl Tp<$T> {
124 #[doc = POW![]]
125 #[cfg(feature = $feat)]
126 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
127 pub fn pow(&self, exponent: Self) -> Self {
128 Self(self.0.powf(exponent.0))
129 }
130
131 #[doc = APOW![]]
132 #[cfg(feature = $feat)]
133 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
134 pub fn apow(&self, power: Self) -> Self {
135 Self(power.0.powf(self.0))
136 // Self(self.0.powf(power.0.recip())) // is it the same?
137 }
138
139 #[doc = ROOT![]]
140 #[cfg(feature = $feat)]
141 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
142 pub fn root(&self, exponent: Self) -> Self {
143 Self(self.0.powf(exponent.0.recip()))
144 }
145
146 #[doc = AROOT![]]
147 #[cfg(feature = $feat)]
148 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
149 pub fn aroot(&self, power: Self) -> Self {
150 Self(power.0.powf(self.0.recip()))
151 }
152
153 #[doc = LOG![]]
154 #[cfg(feature = $feat)]
155 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
156 pub fn log(&self, base: Self) -> Self {
157 Self(self.0.log(base.0))
158 }
159
160 #[doc = ALOG![]]
161 #[cfg(feature = $feat)]
162 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
163 pub fn alog(&self, base: Self) -> Self {
164 Self(base.0.powf(self.0))
165 }
166 }
167 };
168 (@int $T:ty | $feat:literal) => {
169 impl Tp<$T> {
170 #[doc = POW![]]
171 #[cfg(feature = $feat)]
172 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
173 // UNDERSTAND: what happens if exponent is negative?, pow fn requires u32
174 pub const fn pow(&self, exponent: Self) -> Self {
175 Self(self.0.pow(exponent.0 as u32))
176 }
177
178 #[doc = APOW![]]
179 #[cfg(feature = $feat)]
180 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
181 pub fn apow(&self, power: Self) -> Self {
182 Self(power.0.pow(self.0 as u32))
183 // Self(self.0.pow(power.0.recip())) // is the same?
184 }
185
186 #[doc = ROOT![]]
187 #[cfg(feature = $feat)]
188 #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
189 pub const fn root(&self, exponent: Self) -> Self {
190 // IMPROVE make checked conversions... return result?
191 Self(unwrap![ok Int(self.0).root_floor(exponent.0 as u32)].0)
192 }
193
194 // #[doc = AROOT![]]
195 // #[cfg(feature = $feat)]
196 // #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
197 // pub fn aroot(&self, power: Self) -> Self {
198 // Self(power.0.powf(self.0.recip()))
199 // }
200 //
201 // #[doc = LOG![]]
202 // #[cfg(feature = $feat)]
203 // #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
204 // pub fn log(&self, base: Self) -> Self {
205 // Self(self.0.log(base.0))
206 // }
207 //
208 // #[doc = ALOG![]]
209 // #[cfg(feature = $feat)]
210 // #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $feat)))]
211 // pub fn alog(&self, base: Self) -> Self {
212 // Self(base.0.powf(self.0))
213 // }
214 }
215 };
216}
217impl_tp![];
218
219/* docs */
220
221crate::CONST! {
222 POW = "Computes `power` by raising (`self` as base) to `exponent`.\n\n
223- math: $ b^e = p $
224- func: `pow(base, exponent) = base^exponent = power`
225- meta: `base ⊕ exponent = power`
226- symb: `^` → `b^e=p`
227
228# Pairs by
229| self | param | result | shr | shl |
230|:----------:|:----------:|:----------:|:-----:|:-----:|
231| = base | = exponent | = power | >> | << |
232| aroot | root | alog | apow | log |
233";
234
235 APOW = "Computes `base`, such that raising it to (`self` as exponent) produces `power`.\n\n
236- math: $ e \\sqrt[p]{p} = b $ ⟺ $ p^{1/e} = b $
237- func: `apow(exponent, power) = power^(1/exponent) = base`
238- meta: `exponent ⊕ power = base`
239- symb: `^` → `e^p=b`
240# Pairs by
241| self | param | result | shr | shl |
242|:----------:|:----------:|:----------:|:-----:|:-----:|
243| = exponent | = power | = base | >> | << |
244| alog | aroot | root | log | pow |
245";
246
247 ROOT = "Computes `base`, such that raising it to `exponent` produces (`self` as power).\n\n
248- math: $ p^{(1/e)} = b $ ⟺ $ e \\sqrt[p]{p} = b $
249- func: `root(power, exponent) = power^(1/exponent) = base`
250- meta: `power ⊕ exponent = base`
251- symb: `√` → `p√e=b`
252# Pairs by
253| self | param | result | shr | shl |
254|:----------:|:----------:|:----------:|:-----:|:-----:|
255| = power | = exponent | = base | >> | << |
256| log | pow | apow | alog | aroot |
257";
258
259 AROOT = "Computes `exponent`, such that raising (`self` as base) to it produces `power`.\n\n
260- math: $ b^{(1/p)} = e $
261- func: `aroot(base, power) = exponent`
262- meta: `base ⊕ power = exponent`
263- symb: `√` → `b√p=e`
264# Pairs by
265| self | param | result | shr | shl |
266|:----------:|:----------:|:----------:|:-------------:|:-------------:|
267| = base | = power | = exponent | (b>> p>> e>>) | (b<< p<< e<< |
268| pow | apow | log | root | root |
269";
270
271// - log: (>>) p@b=e (p:<< b:== e:>> to alog)
272// - alog: (<<) e@b=p (e:>> b:== e:<< to log)
273
274 LOG = "Computes `exponent` as the logarithm of (`self` as power) with respect to `base`.\n\n
275- math: $ \\log_b(p) = e $
276- func: `log(power, base) = log_base(power) = exponent`
277- meta: `power ⊕ base = exponent`
278- symb: `@` → `p@b=e`
279# Pairs by
280| self | param | result | reverse | shl |
281|:----------:|:----------:|:----------:|:-------------:|:-------------:|
282| = power | = base | = exponent | (??) | (b<< e<< p<<) |
283| root | alog | aroot | alog ?? | log |
284";
285
286 ALOG = "Computes `power`, using (`self` as exponent) and `base`.\n\n
287- math: $ b^e = p $
288- func: `alog(exponent, base) = base^exponent = power`
289- meta: `exponent ⊕ base = power`
290- symb: `@` → `e@b=p`
291# Pairs by
292| self | param | result | reverse | shl |
293|:----------:|:----------:|:----------:|:-------------:|:-------------:|
294| = exponent | = base | = power | (??) | (b<< e<< p<<) |
295| apow | log | pow | log ?? | log |
296";
297}
298/*
299
300# trivial (no shift)
301# shr (cycles)
302# shl (cycles)
303# mid eq (changes direction)
304# left eq (changes direction)
305# right eq (changes direction)
306
307["b== e== p=="] → bep (pow)
308["b>> e>> p>>"] → epb (apow)
309["b<< e<< p<<"] → pbe (log)
310["b<< e== p>>"] → peb (aroot)
311["b== e>> p<<"] → bpe (root)
312["b>> e<< p=="] → ebp (alog)
313
314["e== p== b=="] → epb (apow)
315["e>> p>> b>>"] → pbe (log)
316["e<< p<< b<<"] → bep (pow)
317["e<< p== b>>"] → bpe (root)
318["e== p>> b<<"] → ebp (alog)
319["e>> p<< b=="] → peb (aroot)
320
321["b== p== e=="] → bpe (root)
322["b>> p>> e>>"] → ebp (alog)
323["b<< p<< e<<"] → peb (aroot)
324["b>> p== e<<"] → epb (apow)
325["b== p<< e>>"] → bep (pow)
326["b<< p>> e=="] → pbe (root)
327
328["p== e== b=="] → peb (aroot)
329["p>> e>> b>>"] → bpe (root)
330["p<< e<< b<<"] → ebp (alog)
331["p>> e== b<<"] → bep (pow)
332["p== e<< b>>"] → pbe (log)
333["p<< e>> b=="] → epb (apow)
334
335["p== b== e=="] → pbe (log)
336["p>> b>> e>>"] → bep (pow)
337["p<< b<< e<<"] → epb (apow)
338["p<< b== e>>"] → ebp (alog)
339["p== b>> e<<"] → peb (aroot)
340["p>> b<< e=="] → bpe (root)
341
342["e== b== p=="] → ebp (alog)
343["e>> b>> p>>"] → peb (aroot)
344["e<< b<< p<<"] → bpe (root)
345["e>> b== p<<"] → pbe (log)
346["e== b<< p>>"] → epb (apow)
347["e<< b>> p=="] → bep (pow)
348
349// # Cyclic permutations
350//
351// Each operation is part of a **closed cycle of three elements**,
352// and each function is paired with its **cyclic inverse**.
353//
354// - **Default cycle (`BEP` cycle, `>>` forward shift):**
355// - (… base → exponent → power → base …) (bep, epb, pbe)
356// - **Reverse cycle (`PEB` cycle, `<<` backward shift):**
357// - (… power → exponent → base → power …) (peb, ebp, bpe)
358// - **Unchanged (`==` elements remain static).**
359//
360// **Rules for shifting operations:**
361// - `>>` (forward shift): `b→e`, `e→p`, `p→b`
362// - `<<` (backward shift): `e→b`, `p→e`, `b→p`
363//
364// **Cyclic pairing structure:**
365// - `pow[b⊕e=p] >> apow[e⊕p=b] >> log[p⊕b=e] >> pow …`
366// - `root[p⊕e=b] >> alog[e⊕b=p] >> aroot[b⊕p=e] >> root …`
367// Operations can be viewed in relation to a cycle of elements and paired
368// by the reversion of their cycle.
369//
370// - Let's define a default cyclic order called `forward shift`, or `BEP`, denoted with `>>`:
371// - (… base → exponent → power → base → exponent → power …) (bep, epb, pbe)
372// - Let's call the reverse cyclic order `backward shift`, or `PEB`, and denote with `<<`:
373// - (… power → exponent → base → power → exponent → base …) (peb, ebp, bpe)
374// - Unchanged, non-cycled elements we shall denote with `==`.
375//
376// Using << or >> for the whole operation means all its elements are shifted accordingly:
377// - `>> = b→e && e→p && p→b`
378// - `<< = e→b && p→e && b→p`
379//
380// There are two differenciated cycles:
381// - pow[b⊕e=p] >> apow[e⊕p=b] >> log[p⊕b=e] >> pow…
382// - root[b⊕p=e] >> aroot[p⊕e=b] >> alog[e⊕b=p] >> root…
383//
384// Each function employs a static cyclic order for their operands (self, param and result),
385// and a dynamic cyclic order to switch to the reverse complementary operation.
386///
387/// - pow: (>>)(bep) b^e=p (>> to apow *epb*) (<< to log *pbe*) (b<< e== p>> to root *peb*)
388/// - apow: (>>)(epb) e^p=b (<< to pow *bep*) (>> to log *pbe*) (e<< p== b>> to aroot *bpe*)
389//
390/// - root: (<<)(bpe) b√p=e (<< to *aroot*) (>> to alog *ebp*) (b>> p== e<< to apow *epb*)
391/// - aroot: (<<)(peb) p√e=b (>> to *root*) (<< to alog *ebp*) (p>> e== b<< to pow *bep*)
392///
393/// - log: (>>)(pbe) p@b=e (p<< b== e>> to alog *ebp*) (>> to pow *bep*) (<< to apow *epb*)
394/// - alog: (<<)(ebp) e@b=p (e>> b== p<< to log *pbe*) (<< to aroot *bpe* ) (>> to root *peb*)
395///
396/// Insights
397/// - Each function has a natural shift direction (>> or <<), and belongs to a static cycle.
398/// -
399// NOTE: (b>> e== p<<) = eee && (e>> p== b<<) = ppp (invalid)
400// NOTE: (b>> p== e<<) = ppp && (p>> e== b<<) = eee (invalid)
401// NOTE: (p>> b== e<<) = bbb && (e<< b== p>>) = bbb (invalid)
402
403
404/// Operations defined by the cyclic permutation of 3 elements:
405///
406/// --1st symmetry-- --2nd symmetry-- --3rd symmetry--
407/// - pow = `^` → `b^e=p` (self = base) (result = power) (operand = exponent)
408/// - apow = `^` → `e^p=b` (result = base) (operand = power) (self = exponent)
409///
410/// - aroot = `√` → `b√p=e` (self = base) (result = exponent) (operand = power)
411/// - root = `√` → `p√e=b` (result = base) (operand = exponent) (self = power)
412///
413/// - log = `@` → `p@b=e` (self = power) (result = exponent) (operand = base)
414/// - alog = `@` → `e@b=p` (result = power) (self = exponent) (operand = base)
415
416
417
418/// Exponentiation (pow & apow)
419/// - cycle: (Base → Exponent → Power)
420/// - defines direct power growth.
421/// - describes how multiplying a base builds a power.
422///
423/// Roots (root & aroot)
424/// - cycle: (Power → Exponent → Base)
425/// - defines extracting a base from a power.
426/// - describes how extracting a base from a power requires an exponent.
427///
428/// Logs (log & alog)
429/// - cycle: (Power → Base → Exponent)
430/// - defines extracting an exponent from a power.
431/// - describes how computing an exponent requires knowledge of the base and power.
432
433
434/// - Switching self's role with the operand's:
435/// - key idea: Inverting perspective
436/// - best for: Procedural implementation
437/// - pow ↔ apow, root ↔ aroot, log ↔ alog
438/// - Keeping self's Role.
439/// - Grouping transformations that modify the same kind of number
440/// - Seeing relationships within the same type
441/// - pow ↔ aroot, root ↔ log, apow ↔ alog
442/// - Complementary Transformations
443/// - Pairing operations that reshape structure differently
444/// - Seeing deep structural similarities
445/// - pow ↔ root, apow ↔ log, aroot ↔ alog
446///
447// ## Connecting complementary transformations
448// 1. Power & Root: Internal Structure of a Base
449// - Both apply an exponent, but power extends while root reduces.
450// - Power is direct multiplication, root is fractional multiplication (division in exponent form).
451// - They modify the internal structure of a single number without needing an external reference.
452//
453// 2. Apow & Log: The Scaling & Counting Perspective
454// - Exponentiation (apow) determines a base given an exponent.
455// - Logarithm (log) determines the exponent given a base.
456// - They represent scaling from a reference point rather than modifying a single number’s structure.
457//
458// 3. aroot & alog: The Reference Frame Shift
459// - Both find a missing component, but rather than undoing a single operation, they are about reframing.
460// - aroot asks: "What base, raised to a fractional exponent, gives this radicand?"
461// - alog asks: "What number, raised to this exponent, produces the base?"
462// - They both invert in a relative sense—switching between fractional and exponential forms.
463
464*/