devela/num/float/wrapper/
libm_std.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
// devela::num::float::wrapper::libm_std
//
//! Methods depending on libm, std, or their absence
//
// TOC
// - impls for libm
// - impls for std && not(libm)
// - impls for not(std) && not(libm)
// - macro helper: impl_fp!

use crate::Float;

#[cfg(feature = "dep_libm")]
mod _libm {
    use super::{super::super::shared_docs::*, impl_fp, Float};
    use crate::{_dep::libm::Libm, iif};

    // custom implementations are commented out
    impl_fp![libm:f*:
        r"The largest integer less than or equal to `x`.
        $$ \lfloor x \rfloor = \max \{ n \in \mathbb{Z} \,|\, n \leq x \} $$ "
        floor = floor: ;
        r"The smallest integer greater than or equal to `x`.
        $$ \lceil x \rceil = \min \{ n \in \mathbb{Z} \,|\, n \geq x \} $$"
        ceil = ceil: ;
        "The nearest integer to itself, rounding ties away from `0.0`."
        round = round_ties_away: ;
        "The integral part."
        trunc = trunc: ;
        // fract
        // split == modf
        // abs
        // signum
        "A number composed of its magnitude and the `sign` of other."
        copysign = copysign: sign;
        "Fused multiply-add. Computes (self * mul) + add with only one rounding error."
        fma = mul_add: mul, add;
        // div_euclid
        // rem_euclid
        "Raises itself to the `p` floating point power."
        pow = powf: p;
        // powi
        "Square root."
        sqrt = sqrt: ;
        "$e^x$ (the exponential function)."
        exp = exp: ;
        "$2^x$."
        exp2 = exp2: ;
        "$e^x -1$, more accurately for small values of `x`."
        expm1 = exp_m1: ;
        // ln = ln: x;
        "The natural logarithm."
        log = ln: ;
        "The natural logarithm plus 1, more accurately."
        log1p = ln_1p: ;
        // log
        "The base 2 logarithm."
        log2 = log2: ;
        "The base 10 logarithm."
        log10 = log10: ;
        "The cubic root."
        cbrt = cbrt: ;
        "The hypothenuse (the euclidean distance)."
        hypot = hypot: other;
        "The sine."
        sin = sin: ;
        "The cosine."
        cos = cos: ;
        "The tangent."
        tan = tan: ;
        "The arc sine."
        asin = asin: ;
        "The arc cosine."
        acos = acos: ;
        "The arc tangent."
        atan = atan: ;
        "The arc tangent of two variables."
        atan2 = atan2: other;
        // sin_cos
        "The hyperbolic sine."
        sinh = sinh: ;
        "The hyperbolic cosine."
        cosh = cosh: ;
        "The hyperbolic tangent."
        tanh = tanh: ;
        "The inverse hyperbolic sine."
        asinh = asinh: ;
        "The inverse hyperbolic cosine."
        acosh = acosh: ;
        "The inverse hyperbolic tangent."
        atanh = atanh: ;

        "The minimum of two numbers, ignoring `NaN`."
        fmax = max: other;
        "The minimum of two numbers, ignoring `NaN`."
        fmin = min: other;

        /* only in libm */

        "`10^x`."
        exp10 = exp10: ;
        "The gamma function. Generalizes the factorial function to complex numbers."
        tgamma = gamma: ;
        "The natural logarithm of the absolute value of the gamma function."
        lgamma = lgamma: ;
        "The error function."
        erf = erf: ;
        "The complementary error function (1 - erf)."
        erfc = erfc: ;
        "The bessel function of the first kind, of order 0."
        j0 = j0: ;
        "The bessel function of the first kind, of order 1."
        j1 = j1: ;
        // jn
        "The bessel function of the second kind, of order 0."
        y0 = y0: ;
        "The bessel function of the second kind, of order 1."
        y1 = y1:
        // yn
    ];

    /// $f:   the floating-point type.
    /// $e:   the integer type for integer exponentiation.
    /// $cap: the capability feature enables the given implementation. E.g "_float_f32".
    macro_rules! custom_impls {
        () => {
            custom_impls![(f32, i32):"_float_f32", (f64, i32):"_float_f64"];
        };

        ($( ($f:ty, $e:ty): $cap:literal ),+) => {
            $( custom_impls![@$f, $e, $cap]; )+
        };
        (@$f:ty, $e:ty, $cap:literal) => {
            #[doc = crate::doc_availability!(feature = $cap)]
            ///
            /// # *Implementations using the `libm` feature*.
            #[cfg(feature = $cap )]
            // #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
            impl Float<$f> {
                /// The fractional part.
                /// # Formulation
                #[doc = FORMULA_FRACT!()]
                #[must_use]
                pub fn fract(self) -> Float<$f> { Float(self.0 - Libm::<$f>::trunc(self.0)) }

                /// The integral and fractional parts.
                /// # Formulation
                #[doc = FORMULA_SPLIT!()]
                #[must_use]
                pub fn split(self) -> (Float<$f>, Float<$f>) {
                    let (i, f) = Libm::<$f>::modf(self.0);
                    (Self(i), Self(f))
                }

                /// A number that represents the sign of `x`, propagating `NaN`.
                #[must_use]
                pub fn signum(self) -> Float<$f> {
                    if self.0.is_nan() {
                        Self::NAN
                    } else {
                        Float(Libm::<$f>::copysign(1.0, self.0))
                    }
                }

                /// Returns the nearest integer to `x`, rounding ties to the nearest even integer.
                #[must_use]
                pub fn round_ties_even(self) -> Float<$f> {
                    let r = self.round_ties_away();
                    iif![r.0 % 2.0 == 0.0; r;
                        iif![(self - r).abs() == 0.5; r - self.signum(); r]]
                }

                /// Returns itself clamped between `min` and `max`, ignoring `NaN`.
                #[must_use]
                pub fn clamp(self, min: $f, max: $f) -> Float<$f> {
                    self.max(min).min(max)
                }

                /// Raises `x` to the `p` integer power.
                #[must_use]
                pub fn powi(self, p: $e) -> Float<$f> { self.powf(p as $f) }

                /// The logarithm of the number with respect to an arbitrary base.
                #[must_use]
                pub fn log(self, base: $f) -> Float<$f> {
                    // Float(Self::ln(base).0 / Self::ln(self).0)
                    Float(Float(base).ln().0 / self.ln().0)
                }

                /// The sine and cosine.
                #[must_use]
                pub fn sin_cos(self) -> (Float<$f>, Float<$f>) {
                    let (sin, cos) = Libm::<$f>::sincos(self.0);
                    (Float(sin), Float(cos))
                }

                // NOTE: implemented manually in `shared.rs`
                //
                // /// The clamped `x` value, propagating `NaN`.
                // #[must_use]
                // pub fn clamp_nan(x: $f, min: $f, max: $f) -> $f {
                //     Self::min_nan(Self::max_nan(x, min), max)
                // }
                // /// The maximum of two numbers, propagating `NaN`.
                // #[must_use]
                // pub fn max_nan(x: $f, y: $f) -> $f {
                //     iif![x.is_nan() || y.is_nan(); <$f>::NAN; Libm::<$f>::fmax(x, y)]
                // }
                // /// The minimum of two numbers, propagating `NaN`.
                // #[must_use]
                // pub fn min_nan(x: $f, y: $f) -> $f {
                //     iif![x.is_nan() || y.is_nan(); <$f>::NAN; Libm::<$f>::fmin(x, y)]
                // }

                /* only in libm */

                /// The natural logarithm of the absolute value of the gamma function,
                /// plus its sign.
                #[must_use]
                pub fn lgamma_r(self) -> (Float<$f>, $e) {
                    let (f, sign) = Libm::<$f>::lgamma_r(self.0);
                    (Float(f), sign)
                }
                /// Bessel function of the first kind, of order `n`.
                #[must_use]
                pub fn jn(self, n: $e) -> Float<$f> { Float(Libm::<$f>::jn(n, self.0)) }
                /// Bessel function of the second kind, of order `n`.
                #[must_use]
                pub fn yn(self, n: $e) -> Float<$f> { Float(Libm::<$f>::yn(n, self.0)) }
            }
        };
    }
    custom_impls!();
}

#[cfg(all(not(feature = "dep_libm"), feature = "std"))]
mod _std {
    use super::{super::super::shared_docs::*, impl_fp, Float};

    // custom implementations are commented out:
    impl_fp![std:f*:
        r"The largest integer less than or equal to `x`.
        $$ \lfloor x \rfloor = \max \{ n \in \mathbb{Z} \,|\, n \leq x \} $$ "
        floor = floor: ;
        r"The smallest integer greater than or equal to `x`.
        $$ \lceil x \rceil = \min \{ n \in \mathbb{Z} \,|\, n \geq x \} $$"
        ceil = ceil: ;
        "The nearest integer to `x`, rounding ties away from `0.0`."
        round = round_ties_away: ;
        "The nearest integer to `x`, rounding ties to the nearest even integer."
        round_ties_even = round_ties_even: ;
        r"The integral part.
        $$ \text{trunc}(x) = \begin{cases}
        \lfloor x \rfloor, & \text{if } x \geq 0 \\
        \lceil x \rceil, & \text{if } x < 0
        \end{cases} $$"
        trunc = trunc: ;
        r"The fractional part.
        $$ \text{fract}(x) = x - \text{trunc}(x) $$"
        fract = fract: ;
        // split == modf
        // abs
        "A number that represents the sign of `x`."
        signum = signum: ;
        "A number composed of a `magnitude` and a `sign`."
        copysign = copysign: sign;
        "Fused multiply-add. Computes (self * mul) + add with only one rounding error."
        mul_add = mul_add: mul, add;
        // implemented manually for all:
        // div_euclid = div_euclid: other;
        // rem_euclid = rem_euclid: other;
        "Raises itself to the `p` floating point power."
        powf = powf: p;
        // powi
        "The square root."
        sqrt = sqrt: ;
        "$e^x$ (the exponential function)."
        exp = exp: ;
        "$2^x$."
        exp2 = exp2: ;
        "$e^x -1$, more accurately for small values of `x`."
        exp_m1 = exp_m1: ;
        "The natural logarithm."
        ln = ln: ;
        "The natural logarithm plus 1, more accurately."
        ln_1p = ln_1p: ;
        "The logarithm of the number with respect to an arbitrary base."
        log = log: base;
        "The base 2 logarithm."
        log2 = log2: ;
        "The base 10 logarithm."
        log10 = log10: ;
        "The cubic root."
        cbrt = cbrt: ;
        "The hypothenuse (the euclidean distance)."
        hypot = hypot: other;
        "The sine."
        sin = sin: ;
        "The cosine."
        cos = cos: ;
        "The tangent."
        tan = tan: ;
        "The arc sine."
        asin = asin: ;
        "The arc cosine."
        acos = acos: ;
        "The arc tangent."
        atan = atan: ;
        "The arc tangent of two variables."
        atan2 = atan2: other;
        // sin_cos
        "The hyperbolic sine."
        sinh = sinh: ;
        "The hyperbolic cosine."
        cosh = cosh: ;
        "The hyperbolic tangent."
        tanh = tanh: ;
        "The inverse hyperbolic sine."
        asinh = asinh: ;
        "The inverse hyperbolic cosine."
        acosh = acosh: ;
        "The inverse hyperbolic tangent."
        atanh = atanh: ;

        "The clamped value between `min` and `max`, ignoring `NaN`."
        clamp = clamp: min, max;
        "The maximum of two numbers, ignoring `NaN`."
        max = max: other;
        "The minimum of two numbers, ignoring `NaN`."
        min = min: other

        /* not implemented */
        // exp10: https://internals.rust-lang.org/t/enh-add-exp10-and-expf-base-x-f64-f32-methods-to-stdlib-to-symmetrize-api
        // WAIT: (next_up, next_down) [float_next_up_down](https://github.com/rust-lang/rust/issues/91399)
        // WAIT: (gamma, ln_gamma) [float_gamma](https://github.com/rust-lang/rust/issues/99842)
    ];

    /// $f:   the floating-point type.
    /// $e:   the integer type for integer exponentiation.
    /// $cap: the capability feature that enables the given implementation. E.g "_float_f32".
    macro_rules! custom_impls {
        () => {
            custom_impls![(f32, i32):"_float_f32", (f64, i32):"_float_f64"];
        };
        ($( ($f:ty, $e:ty): $cap:literal ),+) => {
            $( custom_impls![@$f, $e, $cap]; )+
        };
        (@$f:ty, $e:ty, $cap:literal) => {
            #[doc = crate::doc_availability!(feature = $cap)]
            ///
            /// # *Implementations using the `std` feature*.
            #[cfg(feature = $cap )]
            // #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
            impl Float<$f> {
                /// Raises itself to the `p` integer power.
                #[must_use]
                pub fn powi(self, p: $e) -> Float<$f> { Float(<$f>::powi(self.0, p)) }
                /// Both the sine and cosine.
                #[must_use]
                pub fn sin_cos(self) -> (Float<$f>, Float<$f>) {
                    let (sin, cos) = <$f>::sin_cos(self.0);
                    (Float(sin), Float(cos))
                }
                /// The integral and fractional parts of `x`.
                /// # Formulation
                #[doc = FORMULA_SPLIT!()]
                #[must_use]
                pub fn split(self) -> (Float<$f>, Float<$f>) {
                    let trunc = self.trunc();
                    (trunc, Float(self.0 - trunc.0))
                }
            }
        };
    }
    custom_impls!();
}

#[cfg(all(not(feature = "dep_libm"), not(feature = "std")))]
mod _no_std_no_libm {
    use super::{super::super::shared_docs::*, Float};

    /// $f:   the floating-point type.
    /// $uf:  unsigned int type with the same bit-size.
    /// $ie:  the integer type for integer exponentiation.
    /// $cap: the capability feature that enables the given implementation. E.g "_float_f32".
    macro_rules! custom_impls {
        () => {
            custom_impls![(f32, u32, i32):"_float_f32", (f64, u64, i32):"_float_f64"];
        };
        ($( ($f:ty, $uf:ty, $ie:ty) : $cap:literal ),+) => {
            $( custom_impls![@$f, $uf, $ie, $cap]; )+
        };
        (@$f:ty, $uf:ty, $ie:ty, $cap:literal) => {
            #[doc = crate::doc_availability!(feature = $cap)]
            ///
            /// # *Implementations without `std` or `libm`*.
            #[cfg(feature = $cap )]
            // #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
            impl Float<$f> {
                /// The largest integer less than or equal to itself.
                /// # Formulation
                #[doc = crate::FORMULA_FLOOR!()]
                #[must_use]
                pub const fn floor(self) -> Float<$f> { self.const_floor() }

                /// The smallest integer greater than or equal to itself.
                /// # Formulation
                #[doc = FORMULA_CEIL!()]
                #[must_use]
                pub const fn ceil(self) -> Float<$f> { self.const_ceil() }

                /// The nearest integer to itself, default rounding
                ///
                /// This is the default [`round_ties_away`] implementation.
                #[must_use]
                pub const fn round(self) -> Float<$f> { self.const_round() }

                /// The nearest integer to itself, rounding ties away from `0.0`.
                ///
                /// This is the default [`round`] implementation.
                ///
                /// # Formulation
                #[doc = FORMULA_ROUND_TIES_AWAY!()]
                #[must_use]
                pub const fn round_ties_away(self) -> Float<$f> {self.const_round_ties_away() }

                /// Returns the nearest integer to `x`, rounding ties to the nearest even integer.
                /// # Formulation
                #[doc = FORMULA_ROUND_TIES_EVEN!()]
                #[must_use]
                pub const fn round_ties_even(self) -> Float<$f> { self.const_round_ties_even() }

                /// The integral part.
                /// This means that non-integer numbers are always truncated towards zero.
                ///
                /// # Formulation
                #[doc = FORMULA_TRUNC!()]
                ///
                /// This implementation uses bitwise manipulation to remove the fractional part
                /// of the floating-point number. The exponent is extracted, and a mask is
                /// created to remove the fractional part. The new bits are then used to create
                /// the truncated floating-point number.
                #[must_use]
                pub const fn trunc(self) -> Float<$f> { self.const_trunc() }

                /// The fractional part.
                /// # Formulation
                #[doc = FORMULA_FRACT!()]
                #[must_use]
                pub const fn fract(self) -> Float<$f> { self.const_fract() }

                /// The integral and fractional parts.
                /// # Formulation
                #[doc = FORMULA_SPLIT!()]
                #[must_use]
                pub const fn split(self) -> (Float<$f>, Float<$f>) { self.const_split() }

                /// A number that represents its sign, propagating `NaN`.
                #[must_use]
                pub const fn signum(self) -> Float<$f> { self.const_signum() }

                /// A number composed of the magnitude of itself and the `sign` of other.
                #[must_use]
                pub const fn copysign(self, sign: $f) -> Float<$f> { self.const_copysign(sign) }

                /// Returns itself clamped between `min` and `max`, ignoring `NaN`.
                // WAIT:1.85 [const_float_methods](https://github.com/rust-lang/rust/pull/133389)
                #[must_use]
                pub const fn clamp(self, min: $f, max: $f) -> Float<$f> {
                    self.const_clamp(min, max)
                }

                /// The maximum between itself and `other`, ignoring `NaN`.
                // WAIT:1.85 [const_float_methods](https://github.com/rust-lang/rust/pull/133389)
                #[must_use]
                pub const fn max(self, other: $f) -> Float<$f> { self.const_max(other) }

                /// The minimum between itself and other, ignoring `NaN`.
                // WAIT:1.85 [const_float_methods](https://github.com/rust-lang/rust/pull/133389)
                #[must_use]
                pub const fn min(self, other: $f) -> Float<$f> { self.const_min(other) }

                /// Raises itself to the `p` integer power.
                #[must_use]
                pub const fn powi(self, p: $ie) -> Float<$f> { self.const_powi(p) }
            }
        };
    }
    custom_impls!();
}

/// macro helper for implementing methods for `Float`, from either `libm` or `std`.
///
/// $lib: the library to use.
/// $f: the floating-point type to support.
/// $doc: an optional documentation string.
/// $opfn: the original operation function name.
/// $op: the new operation function name in Float.
#[cfg(any(feature = "dep_libm", feature = "std"))]
macro_rules! impl_fp {
    (
    // Matches a wildcard floating-point type (f*).
    // Expands to specific floating-point types (f32, f64).
    $lib:ident : f* : $($ops:tt)*) => {
        impl_fp![$lib : f32 : $($ops)*];
        impl_fp![$lib : f64 : $($ops)*];
    };
    (
    // Matches a specific floating-point type and any number of operations.
    // Generates the impl block for Float<$f> and calls the matching implementation.
    $lib:ident : $f:ty : $($ops:tt)*) => { $crate::paste! {
        #[doc = "# *This implementation block leverages the `" $lib "` feature.*"]
        impl Float<$f> {
            impl_fp![@$lib : $f : $($ops)*];
        }
    }};
    (
    // Matches multiple operations and uses recursion to process each one.
    @$lib:ident : $f:ty : $($doc:literal)? $opfn:ident = $op:ident : $($arg:ident),*
    ; $($rest:tt)*) => {
        impl_fp![@$lib : $f : $($doc)? $opfn = $op : $($arg),*];
        impl_fp![@$lib : $f : $($rest)*];
    };
    (
    // Matches a single operation and implements it using the `libm` library.
    @libm : $f:ty : $($doc:literal)? $opfn:ident = $op:ident : $($arg:ident),*) => {
        $(#[doc = $doc])?
        #[must_use]
        pub fn $op(self, $($arg: $f),*) -> Float<$f> {
            Float($crate::_dep::libm::Libm::<$f>::$opfn(self.0, $($arg),*))
        }
    };
    (
    // Matches a single operation and implements it using the `std` library.
    @std : $f:ty : $($doc:literal)? $opfn:ident = $op:ident : $($arg:ident),*) => {
        $(#[doc = $doc])?
        #[must_use]
        pub fn $op(self, $($arg: $f),*) -> Float<$f> {
            Float(<$f>::$opfn(self.0, $($arg),*))
        }
    };
}
#[cfg(any(feature = "dep_libm", feature = "std"))]
use impl_fp;