devela/num/float/
ext_float.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
// devela::num::float::ext_float
//
//! Extention trait for floatin-point methods.
//
// IMPROVE: remove redundant methods implemented in `core`

use super::shared_docs::*;
#[cfg(_float··)]
use crate::Float;
use crate::{ExtFloatConst, Sign};

/// Extension trait for floating-point types. Associated methods.
///
/// This trait can be more convenient to use than the [`Float`] struct,
/// for non-const operations over primitive floating-point types.
///
/// # Features
/// It depends on having any `_float_f[32|64]` features enabled.
///
/// `Float` has a few more methods implemented if the `dep_libm` feature is enabled.
#[rustfmt::skip]
pub trait ExtFloat: ExtFloatConst + Sized {

    /// The largest integer less than or equal to `self`.
    ///
    /// # Formula
    #[doc = FORMULA_FLOOR!()]
    #[must_use]
    fn floor(self) -> Self;

    /// The smallest integer greater than or equal to `self`.
    ///
    /// # Formula
    #[doc = FORMULA_CEIL!()]
    #[must_use]
    fn ceil(self) -> Self;

    /// The nearest integer to `self`, default rounding, same as
    /// [`round_ties_away`][ExtFloat::round_ties_away]
    #[must_use]
    fn round(self) -> Self;

    /// The nearest integer to `self`, rounding ties away from `0.0`.
    ///
    /// # Formula
    #[doc = FORMULA_ROUND_TIES_AWAY!()]
    #[must_use]
    fn round_ties_away(self) -> Self;

    /// The nearest integer to `self`, rounding ties to the nearest even integer.
    ///
    /// # Formula
    #[doc = FORMULA_ROUND_TIES_EVEN!()]
    #[must_use]
    fn round_ties_even(self) -> Self;

    /// The nearest integer to `self`, rounding ties to the nearest odd integer.
    ///
    /// # Formula
    #[doc = FORMULA_ROUND_TIES_ODD!()]
    #[must_use]
    fn round_ties_odd(self) -> Self;

    /// The integral part of `self`.
    ///
    /// # Formula
    #[doc = FORMULA_TRUNC!()]
    #[must_use]
    fn trunc(self) -> Self;

    /// The fractional part of `self`.
    ///
    /// # Formula
    #[doc = FORMULA_FRACT!()]
    #[must_use]
    fn fract(self) -> Self;

    /// The integral and fractional parts ox `self`.
    ///
    /// # Formula
    #[doc = FORMULA_SPLIT!()]
    #[must_use]
    fn split(self) -> (Self, Self);

    /// The absolute value of `self`.
    #[must_use]
    fn abs(self) -> Self;

    /// The negative absolute value of `self`.
    #[must_use]
    fn neg_abs(self) -> Self;

    /// Returns the `Sign` of `self`.
    #[must_use]
    fn sign(self) -> Sign;

    /// Returns the `Sign` of `self`, except for zero.
    #[must_use]
    fn sign_nonzero(self) -> Sign;

    /// A number that represents the sign of `self`.
    #[must_use]
    fn signum(self) -> Self;

    /// Flips the sign of `self`.
    #[must_use]
    fn flip_sign(self) -> Self;

    /// Returns `true` if `self` has a positive sign.
    #[must_use]
    fn is_sign_positive(self) -> bool;

    /// Returns `true` if `self` has a negative sign.
    #[must_use]
    fn is_sign_negative(self) -> bool;

    /// Returns `true` if `self` is either 0.0 or -0.0.
    #[must_use]
    fn is_zero(self) -> bool;

    /// Returns `true` if `self` has a positive sign and is not zero.
    #[must_use]
    fn is_sign_positive_nonzero(self) -> bool;

    /// Returns `true` if `self` has a negative sign and is not zero.
    #[must_use]
    fn is_sign_negative_nonzero(self) -> bool;

    /// A number composed of a magnitude of `self` and the sign of `sign`.
    #[must_use]
    fn copysign(self, sign: Self) -> Self;

    /// Fused multiply-add. Computes `(self * mul) + add` with only one rounding error.
    ///
    /// With either `std` or `dep_libm` enabled it leverages compiler intrinsics,
    /// otherwise it uses [`mul_add_fallback`][Float::mul_add_fallback].
    #[must_use]
    fn mul_add(self, mul: Self, add: Self) -> Self;

    /// The euclidean division.
    #[must_use]
    fn div_euclid(self, rhs: Self) -> Self;

    /// The least nonnegative remainder of `self % rhs`.
    #[must_use]
    fn rem_euclid(self, rhs: Self) -> Self;

    /// Returns `self` between `[min..=max]` scaled to a new range `[u..=v]`.
    ///
    /// Values of `self` outside `[min..=max]` are not clamped and will result in extrapolation.
    /// # Formula
    #[doc = FORMULA_SCALE!()]
    #[must_use]
    fn scale(self, min: Self, max: Self, u: Self, v: Self) -> Self;

    /// Calculates a linearly interpolated value between `u..=v`
    /// based on the percentage `self` between `[0..=1]`.
    ///
    /// Values of `self` outside `[0..=1]` are not clamped and will result in extrapolation.
    /// # Formula
    #[doc = FORMULA_LERP!()]
    #[must_use]
    fn lerp(self, u: Self, v: Self) -> Self;

    /// Raises `self` to the `y` floating point power.
    ///
    /// With either `std` or `dep_libm` enabled it leverages compiler intrinsics,
    /// otherwise it's equal to [`powf_series`][Float::powf_series].
    #[must_use]
    fn powf(self, y: Self) -> Self;

    /// Raises `self` to the `p` integer power.
    #[must_use]
    fn powi(self, p: i32) -> Self;

    /// The square root.
    ///
    /// With either `std` or `dep_libm` enabled it leverages compiler intrinsics,
    /// otherwise it's equal to [`sqrt_nr`][Float::sqrt_nr].
    #[must_use]
    fn sqrt(self) -> Self;

    /// The square root calculated using the
    /// [fast inverse square root algorithm](https://en.wikipedia.org/wiki/Fast_inverse_square_root).
    #[must_use]
    fn sqrt_fisr(self) -> Self;

    /// $ 1 / \sqrt{x} $ the
    /// [fast inverse square root algorithm](https://en.wikipedia.org/wiki/Fast_inverse_square_root).
    #[must_use]
    fn fisr(self) -> Self;

    /// The cubic root.
    ///
    /// With either `std` or `dep_libm` enabled it leverages compiler intrinsics,
    /// otherwise it's equal to [`cbrt_nr`][Float::cbrt_nr].
    #[must_use]
    fn cbrt(self) -> Self;

    /// The hypothenuse (the euclidean distance).
    ///
    /// With either `std` or `dep_libm` enabled it leverages compiler intrinsics,
    /// otherwise it's equal to [`hypot_nr`][Float::hypot_nr].
    #[must_use]
    fn hypot(self, rhs: Self) -> Self;

    /// $e^x$ (the exponential function).
    ///
    /// The maximum values with a representable result are:
    /// 88.722… for `f32` and 709.782… for `f64`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`exp_series`][Float::exp_series]
    /// with [`exp_series_terms`][Float::exp_series_terms].
    #[must_use]
    fn exp(self) -> Self;

    /// $2^x$.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`exp2_series`][Float::exp2_series]
    /// with [`exp2_series_terms`][Float::exp2_series_terms].
    #[must_use]
    fn exp2(self) -> Self;

    /// The exponential minus 1, more accurately.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`exp_m1_series`][Float::exp_m1_series]
    /// with [`exp_series_terms`][Float::exp_series_terms].
    #[must_use]
    fn exp_m1(self) -> Self;

    /// The natural logarithm of `self`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`ln_series`][Float::ln_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn ln(self) -> Self;

    /// The natural logarithm of `self` plus 1, more accurately.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`ln_1p_series`][Float::ln_1p_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn ln_1p(self) -> Self;

    /// The logarithm of `self` with respect to an arbitrary `base`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`log_series`][Float::log_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn log(self, base: Self) -> Self;

    /// The base 2 logarithm of `self`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`log2_series`][Float::log2_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn log2(self) -> Self;

    /// The base 10 logarithm of `self`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`log10_series`][Float::log10_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn log10(self) -> Self;

    /// The factorial.
    ///
    /// The maximum values with a representable result are:
    /// 34 for `f32` and 170 for `f64`.
    #[must_use]
    fn factorial(n: u32) -> Self;

    /// The sine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages
    /// [`sin_series`][Float::sin_series] with 8 terms.
    #[must_use]
    fn sin(self) -> Self;

    /// The cosine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages
    /// [`cos_series`][Float::cos_series] with 8 terms.
    #[must_use]
    fn cos(self) -> Self;

    /// Both the sine and cosine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages
    /// [`sin_cos_series`][Float::sin_cos_series] with 8 terms.
    #[must_use]
    fn sin_cos(self) -> (Self, Self);

    /// The tangent.
    ///
    /// With both `std` and `dep_libm` disabled it leverages
    /// [`tan_series`][Float::tan_series] with 8 terms.
    #[must_use]
    fn tan(self) -> Self;

    /// The arc sine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`asin_series`][Float::asin_series]
    /// with [`asin_series_terms`][Float::asin_series_terms].
    #[must_use]
    fn asin(self) -> Self;

    /// The arc cosine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`acos_series`][Float::acos_series]
    /// with [`acos_series_terms`][Float::acos_series_terms].
    #[must_use]
    fn acos(self) -> Self;

    /// The arc tangent.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`atan_series`][Float::atan_series]
    /// with [`atan_series_terms`][Float::atan_series_terms].
    #[must_use]
    fn atan(self) -> Self;

    /// The arc tangent of two variables.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`atan2_series`][Float::atan2_series]
    /// with [`atan_series_terms`][Float::atan_series_terms].
    #[must_use]
    fn atan2(self, other: Self) -> Self;

    /// The hyperbolic sine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`sinh_series`][Float::sinh_series]
    /// with [`exp_series_terms`][Float::exp_series_terms].
    #[must_use]
    fn sinh(self) -> Self;

    /// The hyperbolic cosine.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`cosh_series`][Float::cosh_series]
    /// with [`exp_series_terms`][Float::exp_series_terms].
    #[must_use]
    fn cosh(self) -> Self;

    /// The hyperbolic tangent.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`cosh_series`][Float::cosh_series]
    /// with [`exp_series_terms`][Float::exp_series_terms].
    #[must_use]
    fn tanh(self) -> Self;

    /// The inverse hyperbolic sine of `self`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`asinh_series`][Float::asinh_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn asinh(self) -> Self;

    /// The inverse hyperbolic cosine of `self`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`acosh_series`][Float::acosh_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn acosh(self) -> Self;

    /// The inverse hyperbolic tangent of `self`.
    ///
    /// With both `std` and `dep_libm` disabled it leverages [`atanh_series`][Float::atanh_series]
    /// with [`ln_series_terms`][Float::ln_series_terms].
    #[must_use]
    fn atanh(self) -> Self;

    /// The clamped value, propagating `NaN`.
    #[must_use]
    fn clamp_nan(self, min: Self, max: Self) -> Self;

    /// The maximum of two numbers, propagating `NaN`.
    #[must_use]
    fn max_nan(self, other: Self) -> Self;

    /// The minimum of two numbers, propagating `NaN`.
    #[must_use]
    fn min_nan(self, other: Self) -> Self;

    /// The clamped value, using total order.
    ///
    /// # Features
    /// This will only work if the corresponding `_cmp_[f32|f64]` feature is enabled,
    /// otherwise it will return `NaN`.
    #[must_use]
    fn clamp_total(self, min: Self, max: Self) -> Self;

    /// The maximum of two numbers using total order.
    ///
    /// # Features
    /// This will only work if the corresponding `_cmp_[f32|f64]` feature is enabled,
    /// otherwise it will return `NaN`.
    #[must_use]
    fn max_total(self, other: Self) -> Self;

    /// The minimum of two numbers using total order.
    ///
    /// # Features
    /// This will only work if the corresponding `_cmp_[f32|f64]` feature is enabled,
    /// otherwise it will return `NaN`.
    #[must_use]
    fn min_total(self, other: Self) -> Self;

    /// Evaluates a polynomial at the `self` point value, using [Horner's method].
    ///
    /// [Horner's method]: https://en.wikipedia.org/wiki/Horner%27s_method#Polynomial_evaluation_and_long_division
    #[must_use]
    fn eval_poly(self, coefficients: &[Self]) -> Self;

    /// Approximates the derivative of the 1D function `f` at `x` point using step size `h`.
    ///
    /// Uses the [finite difference method].
    ///
    /// See also the [`autodiff`] attr macro, enabled with the `nightly_autodiff` feature.
    ///
    /// [finite difference method]: https://en.wikipedia.org/wiki/Finite_difference_method
    fn derivative<F>(f: F, x: Self, h: Self) -> Self
    where
        F: Fn(Self) -> Self;

    /// Approximates the integral of the 1D function `f` over the range `[x, y]`
    /// using `n` subdivisions.
    ///
    /// Uses the [Riemann Sum](https://en.wikipedia.org/wiki/Riemann_sum).
    fn integrate<F>(f: F, x: Self, y: Self, n: usize) -> Self
    where
        F: Fn(Self) -> Self;

    /// Approximates the partial derivative of the 2D function `f` at point (`x`, `y`)
    /// with step size `h`, differentiating over `x`.
    fn partial_derivative_x<F>(f: F, x: Self, y: Self, h: Self) -> Self
    where
        F: Fn(Self, Self) -> Self;

    /// Approximates the partial derivative of the 2D function `f` at point (`x`, `y`)
    /// with step size `h`, differentiating over `x`.
    fn partial_derivative_y<F>(f: F, x: Self, y: Self, h: Self) -> Self
    where
        F: Fn(Self, Self) -> Self;
}

macro_rules! impl_float_ext {
    () => {
        impl_float_ext![
            (f32, u32 | i32):"_float_f32":"_cmp_f32",
            (f64, u32 | i32):"_float_f64":"_cmp_f32"];
    };

    // $f:   the floating-point type.
    // $ue:  unsigned int type with the same bit-size.
    // $ie:  the integer type for integer exponentiation.
    // $cap: the capability feature that enables the given implementation. E.g "_float_f32".
    // $cmp: the feature that enables the given implementation. E.g "_cmp_f32".
    ($( ($f:ty, $ue:ty|$ie:ty): $cap:literal : $cmp:literal ),+) => {
        $( impl_float_ext![@$f, $ue|$ie, $cap:$cmp]; )+
    };
    (@$f:ty, $ue:ty|$ie:ty, $cap:literal : $cmp:literal) => {
        #[cfg(feature = $cap )]
        #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
        impl ExtFloat for $f {
            fn floor(self) -> Self { Float(self).floor().0 }

            fn ceil(self) -> Self { Float(self).ceil().0 }

            fn round(self) -> Self { Float(self).round_ties_away().0 }

            fn round_ties_away(self) -> Self { Float(self).round_ties_away().0 }

            fn round_ties_even(self) -> Self { Float(self).round_ties_even().0 }

            fn round_ties_odd(self) -> Self { Float(self).round_ties_odd().0 }

            fn trunc(self) -> Self { Float(self).trunc().0 }

            fn fract(self) -> Self { Float(self).fract().0 }

            fn split(self) -> (Self, Self) { let (i, f) = Float(self).split(); (i.0, f.0) }

            fn abs(self) -> Self { Float(self).abs().0 }

            fn neg_abs(self) -> Self { Float(self).neg_abs().0 }

            fn sign(self) -> Sign { Float(self).sign() }

            fn sign_nonzero(self) -> Sign { Float(self).sign_nonzero() }

            fn signum(self) -> Self { Float(self).signum().0 }

            fn flip_sign(self) -> Self { Float(self).flip_sign().0 }

            fn is_sign_positive(self) -> bool { Float(self).is_sign_positive() }

            fn is_sign_negative(self) -> bool { Float(self).is_sign_negative() }

            fn is_zero(self) -> bool { Float(self).is_zero() }

            fn is_sign_positive_nonzero(self) -> bool {
                Float(self).is_sign_positive_nonzero() }

            fn is_sign_negative_nonzero(self) -> bool {
                Float(self).is_sign_negative_nonzero() }

            fn copysign(self, sign: Self) -> Self { Float(self).copysign(sign).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn mul_add(self, mul: Self, add: Self) -> Self {
                Float(self).mul_add(mul, add).0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn mul_add(self, mul: Self, add: Self) -> Self {
                Float(self).mul_add_fallback(mul, add).0
            }

            fn div_euclid(self, rhs: Self) -> Self { Float(self).div_euclid(rhs).0 }

            fn rem_euclid(self, rhs: Self) -> Self { Float(self).rem_euclid(rhs).0 }

            fn scale(self, min: Self, max: Self, u: Self, v: Self) -> Self {
                Float(self).scale(min, max, u, v).0 }
            fn lerp(self, u: Self, v: Self) -> Self { Float(self).lerp(u, v).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn powf(self, y: Self) -> Self { Float(self).powf(y).0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn powf(self, y: Self) -> Self {
                Float(self).powf_series(y, Float(self).ln_series_terms()).0
            }

            fn powi(self, p: $ie) -> Self { Float(self).powi(p).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn sqrt(self) -> Self { Float(self).sqrt().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn sqrt(self) -> Self { Float(self).sqrt_nr().0 }

            fn sqrt_fisr(self) -> Self { Float(self).sqrt_fisr().0 }

            fn fisr(self) -> Self { Float(self).fisr().0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn cbrt(self) -> Self { Float(self).cbrt().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn cbrt(self) -> Self { Float(self).cbrt_nr().0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn hypot(self, rhs: Self) -> Self { Float(self).hypot(rhs).0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn hypot(self, rhs: Self) -> Self { Float(self).hypot_nr(rhs).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn exp(self) -> Self { Float(self).exp().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn exp(self) -> Self {
                Float(self).exp_series(Float(self).exp_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn exp2(self) -> Self { Float(self).exp2().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn exp2(self) -> Self {
                Float(self).exp2_series(Float(self).exp2_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn exp_m1(self) -> Self { Float(self).exp_m1().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn exp_m1(self) -> Self {
                Float(self).exp_m1_series(Float(self).exp_series_terms()).0
            }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn ln(self) -> Self { Float(self).ln().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn ln(self) -> Self {
                Float(self).ln_series(Float(self).ln_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn ln_1p(self) -> Self { Float(self).ln_1p().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn ln_1p(self) -> Self {
                Float(self).ln_1p_series(Float(self).ln_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn log(self, base: Self) -> Self { Float(self).log(base).0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn log(self, base: Self) -> Self {
                Float(self).log_series(base, Float(self).ln_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn log2(self) -> Self { Float(self).log2().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn log2(self) -> Self {
                Float(self).log2_series(Float(self).ln_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn log10(self) -> Self { Float(self).log10().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn log10(self) -> Self {
                Float(self).log10_series(Float(self).ln_series_terms()).0 }

            fn factorial(a: $ue) -> Self { Float::<Self>::factorial(a).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn sin(self) -> Self { Float(self).sin().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn sin(self) -> Self { Float(self).sin_series(8).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn cos(self) -> Self { Float(self).cos().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn cos(self) -> Self { Float(self).cos_series(8).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn sin_cos(self) -> (Self, Self) { let (s, c) = Float(self).sin_cos(); (s.0, c.0) }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn sin_cos(self) -> (Self, Self) {
                let (s, c) = Float(self).sin_cos_series(8); (s.0, c.0) }
            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn tan(self) -> Self { Float(self).tan().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn tan(self) -> Self { Float(self).tan_series(8).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn asin(self) -> Self { Float(self).asin().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn asin(self) -> Self {
                Float(self).asin_series(Float(self).asin_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn acos(self) -> Self { Float(self).acos().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn acos(self) -> Self {
                Float(self).acos_series(Float(self).acos_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn atan(self) -> Self { Float(self).atan().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn atan(self) -> Self {
                Float(self).atan_series(Float(self).atan_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn atan2(self, other: Self) -> Self { Float(self).atan2(other).0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn atan2(self, other: Self) -> Self {
                Float(self).atan2_series(other, Float(self).atan_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn sinh(self) -> Self { Float(self).sinh().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn sinh(self) -> Self {
                Float(self).sinh_series(Float(self).exp_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn cosh(self) -> Self { Float(self).cosh().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn cosh(self) -> Self {
                Float(self).cosh_series(Float(self).exp_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn tanh(self) -> Self { Float(self).tanh().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn tanh(self) -> Self {
                Float(self).tanh_series(Float(self).exp_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn asinh(self) -> Self { Float(self).asinh().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn asinh(self) -> Self {
                Float(self).asinh_series(Float(self).exp_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn acosh(self) -> Self { Float(self).acosh().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn acosh(self) -> Self {
                Float(self).acosh_series(Float(self).exp_series_terms()).0 }

            #[cfg(any(feature = "std", feature = "dep_libm"))]
            fn atanh(self) -> Self { Float(self).atanh().0 }
            #[cfg(not(any(feature = "std", feature = "dep_libm")))]
            fn atanh(self) -> Self {
                Float(self).atanh_series(Float(self).exp_series_terms()).0 }

            fn clamp_nan(self, min: Self, max: Self) -> Self { Float(self).clamp_nan(min, max).0 }

            fn max_nan(self, other: Self) -> Self { Float(self).max_nan(other).0 }

            fn min_nan(self, other: Self) -> Self { Float(self).min_nan(other).0 }

            #[cfg(feature = $cmp)]
            fn clamp_total(self, min: Self, max: Self) -> Self {
                Float(self).clamp_total(min, max).0
            }
            #[cfg(not(feature = $cmp))]
            fn clamp_total(self, _: Self, _: Self) -> Self { <$f>::NAN }

            #[cfg(feature = $cmp)]
            fn max_total(self, other: Self) -> Self { Float(self).max_total(other).0 }
            #[cfg(not(feature = $cmp))]
            fn max_total(self, _: Self) -> Self { <$f>::NAN }

            #[cfg(feature = $cmp)]
            fn min_total(self, other: Self) -> Self { Float(self).min_total(other).0 }
            #[cfg(not(feature = $cmp))]
            fn min_total(self, _: Self) -> Self { <$f>::NAN }

            fn eval_poly(self, coefficients: &[Self]) -> Self {
                Float(self).eval_poly(coefficients).0
            }

            fn derivative<F>(f: F, x: Self, h: Self) -> Self
            where F: Fn(Self) -> Self {
                Float::<Self>::derivative(f, x, h).0
            }
            fn integrate<F>(f: F, x: Self, y: Self, n: usize) -> Self
            where F: Fn(Self) -> Self {
                Float::<Self>::integrate(f, x, y, n).0
            }

            fn partial_derivative_x<F>(f: F, x: Self, y: Self, h: Self) -> Self
            where
                F: Fn(Self, Self) -> Self,
            {
                Float::<Self>::partial_derivative_x(f, x, y, h).0
            }

            fn partial_derivative_y<F>(f: F, x: Self, y: Self, h: Self) -> Self
            where
                F: Fn(Self, Self) -> Self,
            {
                Float::<Self>::partial_derivative_y(f, x, y, h).0
            }
        }
    }
}
impl_float_ext!();