devela/data/sort/
generic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// devela::data::sort::impl_generic
//
//! Implements sorting algorithms for exclusive generic arrays `[T: Ord; N]`.
//

use crate::{iif, Sort};
#[cfg(feature = "alloc")]
use crate::{BTreeMap, Vec};

impl<T: Ord> Sort<&mut [T]> {
    /// Sorts a slice using bubble sort.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut data = [4, 7, -5, 1, -13, 0];
    /// Sort(&mut data[..]).bubble();
    /// assert_eq![data, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn bubble(self) {
        for i in 0..self.0.len() {
            for j in 0..self.0.len() - i - 1 {
                iif![self.0[j] > self.0[j + 1]; self.0.swap(j, j + 1)];
            }
        }
    }

    /// Sorts a slice using counting sort, and returns the ordered frequencies.
    ///
    /// Counting sort is particularly efficient when the range of input values is
    /// small compared to the number of elements to be sorted.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut data = [4, 64, 4, 2, 4, 8, 8, 4, 8, 4, 2, 8, 64, 4, 8, 4, 2];
    /// let freq = Sort(&mut data[..]).counting();
    /// assert_eq![data, [2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 64, 64]];
    /// assert_eq![freq, [3, 7, 5, 2]];
    /// ```
    #[cfg(feature = "alloc")]
    #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = "alloc")))]
    pub fn counting(self) -> Vec<usize>
    where
        T: Clone,
    {
        let mut counts = BTreeMap::new();
        // Calculate the frequencies and save them
        for item in self.0.iter() {
            let count = counts.entry(item.clone()).or_insert(0);
            *count += 1;
        }
        let freq: Vec<usize> = counts.values().copied().collect();
        // Reconstruct the sorted slice
        let mut i = 0;
        for (item, &count) in counts.iter() {
            for _ in 0..count {
                self.0[i] = item.clone();
                i += 1;
            }
        }
        freq
    }

    /// Sorts a slice using counting sort, and writes the frequencies, without allocating.
    ///
    /// Counting sort is particularly efficient when the range of input values is
    /// small compared to the number of elements to be sorted.
    ///
    /// This implementation makes the following assumptions:
    /// - `values` contains all distinct values present in `self`.
    /// - `freq` and `values` are of the same length.
    /// - `freq` only contains zeros.
    ///
    /// Returns `None` if `values` does not contain a value present in `self`,
    /// or if `self` has more elements than `freq` can accommodate.
    ///
    /// Note that the frequencies in `freq` will be in the order of the sorted
    /// distinct elements in `values`.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut data = [4, 64, 4, 2, 4, 8, 8, 4, 8, 4, 2, 8, 64, 4, 8, 4, 2];
    /// let values = [64, 4, 2, 8];
    /// let mut freq = [0; 4];
    /// Sort(&mut data[..]).counting_buf(&mut freq, &values);
    /// assert_eq![data, [64, 64, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 8, 8, 8, 8, 8]];
    /// assert_eq![freq, [2, 7, 3, 5]];
    /// ```
    /// # Panics
    /// Panics in debug if the length of `freq` and `values` is not the same.
    pub fn counting_buf(self, freq: &mut [T], values: &[T]) -> Option<()>
    where
        T: Clone + TryInto<usize> + TryFrom<usize>,
    {
        debug_assert_eq![freq.len(), values.len()];
        // Calculate the frequencies
        for item in self.0.iter() {
            let index = values.iter().position(|x| x == item)?;
            let count: usize = freq[index].clone().try_into().ok()?;
            freq[index] = T::try_from(count + 1).ok()?;
        }
        // Reconstruct the sorted slice
        let mut i = 0;
        for (index, count) in freq.iter().enumerate() {
            for _ in 0_usize..(*count).clone().try_into().ok()? {
                if i >= self.0.len() {
                    return None; // Out of bounds
                }
                self.0[i] = values[index].clone();
                i += 1;
            }
        }
        Some(())
    }

    /// Sorts a slice using insertion sort.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// Sort(&mut arr[..]).insertion();
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn insertion(self) {
        for i in 1..self.0.len() {
            let mut j = i;
            while j > 0 && self.0[j - 1] > self.0[j] {
                self.0.swap(j, j - 1);
                j -= 1;
            }
        }
    }

    /// Sorts a `slice` using merge sort.
    ///
    /// It allocates one vector for the entire sort operation.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// Sort(&mut arr[..]).merge();
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    #[cfg(feature = "alloc")]
    #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = "alloc")))]
    pub fn merge(self)
    where
        T: Copy,
    {
        let len = self.0.len();
        let mut buffer = Vec::with_capacity(len);
        buffer.resize(len, self.0[0]);
        helper::sort_merge_internal(self.0, &mut buffer);
    }

    /// Sorts a slice using selection sort.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// Sort(&mut arr[..]).selection();
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn selection(self) {
        let len = self.0.len();
        for i in 0..len - 1 {
            let mut min_index = i;
            for j in (i + 1)..len {
                iif![self.0[j] < self.0[min_index]; min_index = j];
            }
            self.0.swap(min_index, i);
        }
    }

    /// Sorts a slice using shaker sort.
    ///
    /// Also known as cocktail sort and double quicksort.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// Sort(&mut arr[..]).shaker();
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn shaker(self)
    where
        T: Clone,
    {
        let (mut swapped, mut start, mut end) = (true, 0, self.0.len());
        while swapped {
            swapped = false;
            for i in start..end - 1 {
                iif![self.0[i] > self.0[i + 1]; { self.0.swap(i, i + 1); swapped = true; }];
            }
            iif![!swapped; break];
            swapped = false;
            end -= 1;
            for i in (start..end - 1).rev() {
                iif![self.0[i] > self.0[i + 1]; { self.0.swap(i, i + 1); swapped = true; }];
            }
            start += 1;
        }
    }
}

impl<'a, T: Ord + 'a> Sort<&'a mut [T]> {
    /// Sorts a `slice` using quick sort with the Lomuto partition scheme.
    ///
    /// It performs more swaps compared to the Hoare partition scheme.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// // Sort(&mut arr[..]).quick_lomuto();
    /// Sort::quick_lomuto(&mut arr[..]);
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn quick_lomuto(slice: &mut [T]) {
        iif![slice.len() < 2; return];
        let ipivot = helper::sort_quick_lomuto_partition(slice);
        Self::quick_lomuto(&mut slice[0..ipivot]);
        Self::quick_lomuto(&mut slice[ipivot + 1..]);
    }
    // NOTE: can't use self because of multiple mutable borrows
    // pub fn quick_lomuto(self) {
    //     iif![self.0.len() < 2; return];
    //     let ipivot = helper::sort_quick_lomuto_partition(self.0);
    //     Self(&mut self.0[0..ipivot]).quick_lomuto();
    //     Self(&mut self.0[ipivot + 1..]).quick_lomuto();
    // }

    /// Sorts a `slice` using quick sort with the Three way partition scheme.
    ///
    /// It is more efficient when dealing with duplicate elements.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// Sort::quick_3way(&mut arr);
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn quick_3way(slice: &mut [T])
    where
        T: Clone,
    {
        let len = slice.len();
        iif![len < 2; return];
        let (lt, gt) = helper::sort_quick_3way_partition(slice);
        Self::quick_3way(&mut slice[0..lt]);
        iif![gt < len; Self::quick_3way(&mut slice[gt..])];
    }
    // NOTE: can't use self because of multiple mutable borrows
    // pub fn quick_3way(self) where T: Clone {
    //     let len = self.0.len();
    //     iif![len < 2; return];
    //     let (lt, gt) = helper::sort_quick_3way_partition(self.0);
    //     Self(&mut self.0[0..lt]).quick_3way();
    //     iif![gt < len; Self(&mut self.0[gt..]).quick_3way()];
    // }

    /// Sorts a `slice` using quick sort with the Hoare partition scheme.
    ///
    /// It performs fewer swaps compared to the Lomuto partition scheme.
    ///
    /// # Examples
    /// ```
    /// # use devela::Sort;
    /// let mut arr = [4, 7, -5, 1, -13, 0];
    /// Sort::quick_hoare(&mut arr);
    /// assert_eq![arr, [-13, -5, 0, 1, 4, 7]];
    /// ```
    pub fn quick_hoare(slice: &mut [T])
    where
        T: Clone,
    {
        let len = slice.len();
        iif![len < 2; return];
        let ipivot = helper::sort_quick_hoare_partition(slice);
        iif![ipivot > 0; Self::quick_hoare(&mut slice[0..ipivot])];
        iif![ipivot + 1 < len; Self::quick_hoare(&mut slice[ipivot + 1..])];
    }
    // NOTE: can't use self because of multiple mutable borrows
    // pub fn quick_hoare(self) where T: Clone {
    //     let len = self.0.len();
    //     iif![len < 2; return];
    //     let ipivot = helper::sort_quick_hoare_partition(self.0);
    //     iif![ipivot > 0; Self(&mut self.0[0..ipivot]).quick_hoare()];
    //     iif![ipivot + 1 < len; Self(&mut self.0[ipivot + 1..]).quick_hoare()];
    // }
}

// private helper fns
mod helper {
    use crate::{iif, sf, Ordering};

    #[cfg(feature = "alloc")]
    pub(super) fn sort_merge_internal<T: Ord + Copy>(slice: &mut [T], buffer: &mut [T]) {
        let len = slice.len();
        iif![len <= 1; return];
        let mid = len / 2;
        sort_merge_internal(&mut slice[..mid], buffer);
        sort_merge_internal(&mut slice[mid..], buffer);
        sort_merge_merge(&slice[..mid], &slice[mid..], &mut buffer[..len]);
        slice.copy_from_slice(&buffer[..len]);
    }
    #[cfg(feature = "alloc")]
    pub(super) fn sort_merge_merge<T: Ord + Copy>(left: &[T], right: &[T], slice: &mut [T]) {
        let (mut i, mut j, mut k) = (0, 0, 0);
        while i < left.len() && j < right.len() {
            iif![ left[i] < right[j] ;
                { slice[k] = left[i]; i += 1; } ;
                { slice[k] = right[j]; j += 1; }
            ];
            k += 1;
        }
        iif![i < left.len(); slice[k..].copy_from_slice(&left[i..])];
        iif![j < right.len(); slice[k..].copy_from_slice(&right[j..])];
    }
    pub(super) fn sort_quick_lomuto_partition<T: Ord>(slice: &mut [T]) -> usize {
        let len = slice.len();
        let ipivot = len / 2;
        slice.swap(ipivot, len - 1);
        let mut i = 0;
        for j in 0..len - 1 {
            iif![slice[j] <= slice[len - 1]; { slice.swap(i, j); i += 1; }];
        }
        slice.swap(i, len - 1);
        i
    }
    pub(super) fn sort_quick_3way_partition<T: Ord + Clone>(slice: &mut [T]) -> (usize, usize) {
        let len = slice.len();
        let ipivot = len / 2;
        let pivot = slice[ipivot].clone();
        let (mut lt, mut gt, mut i) = (0, len, 0);
        while i < gt {
            match slice[i].cmp(&pivot) {
                Ordering::Less => {
                    slice.swap(lt, i);
                    lt += 1;
                    i += 1;
                }
                Ordering::Greater => {
                    gt -= 1;
                    slice.swap(i, gt);
                }
                Ordering::Equal => i += 1,
            }
        }
        (lt, gt)
    }
    pub(super) fn sort_quick_hoare_partition<T: Ord + Clone>(slice: &mut [T]) -> usize {
        let len = slice.len();
        let ipivot = len / 2;
        let pivot = slice[ipivot].clone();
        let (mut i, mut j) = (0, len - 1);
        loop {
            sf! {
                while slice[i] < pivot { i += 1; }
                while slice[j] > pivot { j -= 1; }
            }
            iif![i >= j; return j];
            slice.swap(i, j);
        }
    }
}