Struct TypeId

1.0.0 · Source
pub struct TypeId { /* private fields */ }
Expand description

core Represents a globally unique identifier for a type.

Re-exported from core::any:: .


A TypeId represents a globally unique identifier for a type.

Each TypeId is an opaque object which does not allow inspection of what’s inside but does allow basic operations such as cloning, comparison, printing, and showing.

A TypeId is currently only available for types which ascribe to 'static, but this limitation may be removed in the future.

While TypeId implements Hash, PartialOrd, and Ord, it is worth noting that the hashes and ordering will vary between Rust releases. Beware of relying on them inside of your code!

§Danger of Improper Variance

You might think that subtyping is impossible between two static types, but this is false; there exists a static type with a static subtype. To wit, fn(&str), which is short for for<'any> fn(&'any str), and fn(&'static str), are two distinct, static types, and yet, fn(&str) is a subtype of fn(&'static str), since any value of type fn(&str) can be used where a value of type fn(&'static str) is needed.

This means that abstractions around TypeId, despite its 'static bound on arguments, still need to worry about unnecessary and improper variance: it is advisable to strive for invariance first. The usability impact will be negligible, while the reduction in the risk of unsoundness will be most welcome.

§Examples

Suppose SubType is a subtype of SuperType, that is, a value of type SubType can be used wherever a value of type SuperType is expected. Suppose also that CoVar<T> is a generic type, which is covariant over T (like many other types, including PhantomData<T> and Vec<T>).

Then, by covariance, CoVar<SubType> is a subtype of CoVar<SuperType>, that is, a value of type CoVar<SubType> can be used wherever a value of type CoVar<SuperType> is expected.

Then if CoVar<SuperType> relies on TypeId::of::<SuperType>() to uphold any invariants, those invariants may be broken because a value of type CoVar<SuperType> can be created without going through any of its methods, like so:

type SubType = fn(&());
type SuperType = fn(&'static ());
type CoVar<T> = Vec<T>; // imagine something more complicated

let sub: CoVar<SubType> = CoVar::new();
// we have a `CoVar<SuperType>` instance without
// *ever* having called `CoVar::<SuperType>::new()`!
let fake_super: CoVar<SuperType> = sub;

The following is an example program that tries to use TypeId::of to implement a generic type Unique<T> that guarantees unique instances for each Unique<T>, that is, and for each type T there can be at most one value of type Unique<T> at any time.

mod unique {
    use std::any::TypeId;
    use std::collections::BTreeSet;
    use std::marker::PhantomData;
    use std::sync::Mutex;

    static ID_SET: Mutex<BTreeSet<TypeId>> = Mutex::new(BTreeSet::new());

    // TypeId has only covariant uses, which makes Unique covariant over TypeAsId 🚨
    #[derive(Debug, PartialEq)]
    pub struct Unique<TypeAsId: 'static>(
        // private field prevents creation without `new` outside this module
        PhantomData<TypeAsId>,
    );

    impl<TypeAsId: 'static> Unique<TypeAsId> {
        pub fn new() -> Option<Self> {
            let mut set = ID_SET.lock().unwrap();
            (set.insert(TypeId::of::<TypeAsId>())).then(|| Self(PhantomData))
        }
    }

    impl<TypeAsId: 'static> Drop for Unique<TypeAsId> {
        fn drop(&mut self) {
            let mut set = ID_SET.lock().unwrap();
            (!set.remove(&TypeId::of::<TypeAsId>())).then(|| panic!("duplicity detected"));
        }
    }
}

use unique::Unique;

// `OtherRing` is a subtype of `TheOneRing`. Both are 'static, and thus have a TypeId.
type TheOneRing = fn(&'static ());
type OtherRing = fn(&());

fn main() {
    let the_one_ring: Unique<TheOneRing> = Unique::new().unwrap();
    assert_eq!(Unique::<TheOneRing>::new(), None);

    let other_ring: Unique<OtherRing> = Unique::new().unwrap();
    // Use that `Unique<OtherRing>` is a subtype of `Unique<TheOneRing>` 🚨
    let fake_one_ring: Unique<TheOneRing> = other_ring;
    assert_eq!(fake_one_ring, the_one_ring);

    std::mem::forget(fake_one_ring);
}

Implementations§

Source§

impl TypeId

1.0.0 (const: unstable) · Source

pub fn of<T>() -> TypeId
where T: 'static + ?Sized,

Returns the TypeId of the generic type parameter.

§Examples
use std::any::{Any, TypeId};

fn is_string<T: ?Sized + Any>(_s: &T) -> bool {
    TypeId::of::<String>() == TypeId::of::<T>()
}

assert_eq!(is_string(&0), false);
assert_eq!(is_string(&"cookie monster".to_string()), true);

Trait Implementations§

1.0.0 · Source§

impl Clone for TypeId

Source§

fn clone(&self) -> TypeId

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.0.0 · Source§

impl Debug for TypeId

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl Hash for TypeId

Source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
1.0.0 · Source§

impl Ord for TypeId

Source§

fn cmp(&self, other: &TypeId) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
1.0.0 · Source§

impl PartialEq for TypeId

Source§

fn eq(&self, other: &TypeId) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 · Source§

impl PartialOrd for TypeId

Source§

fn partial_cmp(&self, other: &TypeId) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
1.0.0 · Source§

impl Copy for TypeId

1.0.0 · Source§

impl Eq for TypeId

Auto Trait Implementations§

§

impl Freeze for TypeId

§

impl RefUnwindSafe for TypeId

§

impl Send for TypeId

§

impl Sync for TypeId

§

impl Unpin for TypeId

§

impl UnwindSafe for TypeId

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> ByteSized for T

Source§

const BYTE_ALIGN: usize = _

The alignment of this type in bytes.
Source§

const BYTE_SIZE: usize = _

The size of this type in bytes.
Source§

fn byte_align(&self) -> usize

Returns the alignment of this type in bytes.
Source§

fn byte_size(&self) -> usize

Returns the size of this type in bytes. Read more
Source§

fn ptr_size_ratio(&self) -> [usize; 2]

Returns the size ratio between Ptr::BYTES and BYTE_SIZE. Read more
Source§

impl<T, R> Chain<R> for T
where T: ?Sized,

Source§

fn chain<F>(self, f: F) -> R
where F: FnOnce(Self) -> R, Self: Sized,

Chain a function which takes the parameter by value.
Source§

fn chain_ref<F>(&self, f: F) -> R
where F: FnOnce(&Self) -> R,

Chain a function which takes the parameter by shared reference.
Source§

fn chain_mut<F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self) -> R,

Chain a function which takes the parameter by exclusive reference.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<T> ExtAny for T
where T: Any + ?Sized,

Source§

fn type_id() -> TypeId

Returns the TypeId of Self. Read more
Source§

fn type_of(&self) -> TypeId

Returns the TypeId of self. Read more
Source§

fn type_name(&self) -> &'static str

Returns the type name of self. Read more
Source§

fn type_is<T: 'static>(&self) -> bool

Returns true if Self is of type T. Read more
Source§

fn type_hash(&self) -> u64

Returns a deterministic hash of the TypeId of Self.
Source§

fn type_hash_with<H: Hasher>(&self, hasher: H) -> u64

Returns a deterministic hash of the TypeId of Self using a custom hasher.
Source§

fn as_any_ref(&self) -> &dyn Any
where Self: Sized,

Upcasts &self as &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any
where Self: Sized,

Upcasts &mut self as &mut dyn Any. Read more
Source§

fn as_any_box(self: Box<Self>) -> Box<dyn Any>
where Self: Sized,

Upcasts Box<self> as Box<dyn Any>. Read more
Source§

fn downcast_ref<T: 'static>(&self) -> Option<&T>

Available on crate feature unsafe_layout only.
Returns some shared reference to the inner value if it is of type T. Read more
Source§

fn downcast_mut<T: 'static>(&mut self) -> Option<&mut T>

Available on crate feature unsafe_layout only.
Returns some exclusive reference to the inner value if it is of type T. Read more
Source§

impl<T> ExtMem for T
where T: ?Sized,

Source§

const NEEDS_DROP: bool = _

Know whether dropping values of this type matters, in compile-time.
Source§

fn mem_align_of<T>() -> usize

Returns the minimum alignment of the type in bytes. Read more
Source§

fn mem_align_of_val(&self) -> usize

Returns the alignment of the pointed-to value in bytes. Read more
Source§

fn mem_size_of<T>() -> usize

Returns the size of a type in bytes. Read more
Source§

fn mem_size_of_val(&self) -> usize

Returns the size of the pointed-to value in bytes. Read more
Source§

fn mem_copy(&self) -> Self
where Self: Copy,

Bitwise-copies a value. Read more
Source§

fn mem_needs_drop(&self) -> bool

Returns true if dropping values of this type matters. Read more
Source§

fn mem_drop(self)
where Self: Sized,

Drops self by running its destructor. Read more
Source§

fn mem_forget(self)
where Self: Sized,

Forgets about self without running its destructor. Read more
Source§

fn mem_replace(&mut self, other: Self) -> Self
where Self: Sized,

Replaces self with other, returning the previous value of self. Read more
Source§

fn mem_take(&mut self) -> Self
where Self: Default,

Replaces self with its default value, returning the previous value of self. Read more
Source§

fn mem_swap(&mut self, other: &mut Self)
where Self: Sized,

Swaps the value of self and other without deinitializing either one. Read more
Source§

unsafe fn mem_zeroed<T>() -> T

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

fn mem_as_bytes(&self) -> &[u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &[u8]. Read more
Source§

fn mem_as_bytes_mut(&mut self) -> &mut [u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &mut [u8]. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

Source§

impl<T> Hook for T

Source§

fn hook_ref<F>(self, f: F) -> Self
where F: FnOnce(&Self),

Applies a function which takes the parameter by shared reference, and then returns the (possibly) modified owned value. Read more
Source§

fn hook_mut<F>(self, f: F) -> Self
where F: FnOnce(&mut Self),

Applies a function which takes the parameter by exclusive reference, and then returns the (possibly) modified owned value. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Ungil for T
where T: Send,