pub struct Matrix<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool = true, const MAX_LEN_DET: usize = { 4 * 4 }> {
pub data: [T; LEN],
}
Expand description
A static R×C
shaped matrix backed by an array.
T
is the type of elements in the matrix.R
andC
represent the dimensions in terms of columns and rows.LEN
is the total number of elements, and the product ofC
andR
.RMAJ
indicates if the storage is row-major (true
) or column-major (false
).MAX_LEN_DET
is the maximum matrix length for calculating the determinant for square matrices of dimension > 3.
Fields§
§data: [T; LEN]
Internal storage of matrix elements in a fixed-size array.
- Stored in row-major or column-major order depending on
RMAJ
. - Indexed using
(row, col)
accessor methods.
Implementations§
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize, T: Copy> Matrix<T, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize, T: Copy> Matrix<T, R, C, LEN, true, MAX_LEN_DET>
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i8, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i8, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<i8, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<i8, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<i8, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<i8, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<i8> ⓘ
pub const fn determinant(&self) -> Option<i8> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> i8
pub const fn determinant_unchecked(&self) -> i8
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[i8],
buffer: &mut [i8],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[i8], buffer: &mut [i8], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[i8],
buffer: &mut [i8],
) -> i8
pub const fn submatrix_determinant( dim: usize, matrix: &[i8], buffer: &mut [i8], ) -> i8
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> i8
pub const fn at(&self, row: usize, col: usize) -> i8
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i16, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i16, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<i16, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<i16, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<i16, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<i16, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<i16> ⓘ
pub const fn determinant(&self) -> Option<i16> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> i16
pub const fn determinant_unchecked(&self) -> i16
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[i16],
buffer: &mut [i16],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[i16], buffer: &mut [i16], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[i16],
buffer: &mut [i16],
) -> i16
pub const fn submatrix_determinant( dim: usize, matrix: &[i16], buffer: &mut [i16], ) -> i16
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> i16
pub const fn at(&self, row: usize, col: usize) -> i16
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i32, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i32, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<i32, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<i32, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<i32, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<i32, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<i32> ⓘ
pub const fn determinant(&self) -> Option<i32> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> i32
pub const fn determinant_unchecked(&self) -> i32
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[i32],
buffer: &mut [i32],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[i32], buffer: &mut [i32], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[i32],
buffer: &mut [i32],
) -> i32
pub const fn submatrix_determinant( dim: usize, matrix: &[i32], buffer: &mut [i32], ) -> i32
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> i32
pub const fn at(&self, row: usize, col: usize) -> i32
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i64, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i64, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<i64, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<i64, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<i64, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<i64, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<i64> ⓘ
pub const fn determinant(&self) -> Option<i64> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> i64 ⓘ
pub const fn determinant_unchecked(&self) -> i64 ⓘ
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[i64],
buffer: &mut [i64],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[i64], buffer: &mut [i64], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[i64],
buffer: &mut [i64],
) -> i64 ⓘ
pub const fn submatrix_determinant( dim: usize, matrix: &[i64], buffer: &mut [i64], ) -> i64 ⓘ
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> i64 ⓘ
pub const fn at(&self, row: usize, col: usize) -> i64 ⓘ
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i128, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<i128, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<i128, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<i128, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<i128, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<i128, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<i128> ⓘ
pub const fn determinant(&self) -> Option<i128> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> i128
pub const fn determinant_unchecked(&self) -> i128
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[i128],
buffer: &mut [i128],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[i128], buffer: &mut [i128], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[i128],
buffer: &mut [i128],
) -> i128
pub const fn submatrix_determinant( dim: usize, matrix: &[i128], buffer: &mut [i128], ) -> i128
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> i128
pub const fn at(&self, row: usize, col: usize) -> i128
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<isize, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<isize, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<isize, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<isize, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<isize, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<isize, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<isize> ⓘ
pub const fn determinant(&self) -> Option<isize> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> isize
pub const fn determinant_unchecked(&self) -> isize
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[isize],
buffer: &mut [isize],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[isize], buffer: &mut [isize], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[isize],
buffer: &mut [isize],
) -> isize
pub const fn submatrix_determinant( dim: usize, matrix: &[isize], buffer: &mut [isize], ) -> isize
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> isize
pub const fn at(&self, row: usize, col: usize) -> isize
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<f32, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<f32, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<f32, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<f32, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<f32, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<f32, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<f32> ⓘ
pub const fn determinant(&self) -> Option<f32> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> f32
pub const fn determinant_unchecked(&self) -> f32
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[f32],
buffer: &mut [f32],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[f32], buffer: &mut [f32], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[f32],
buffer: &mut [f32],
) -> f32
pub const fn submatrix_determinant( dim: usize, matrix: &[f32], buffer: &mut [f32], ) -> f32
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> f32
pub const fn at(&self, row: usize, col: usize) -> f32
Returns an immutable reference to the element at (row
, col
).
Source§impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<f64, R, C, LEN, true, MAX_LEN_DET>
impl<const R: usize, const C: usize, const LEN: usize, const MAX_LEN_DET: usize> Matrix<f64, R, C, LEN, true, MAX_LEN_DET>
Sourcepub const fn identity() -> Option<Self> ⓘ
pub const fn identity() -> Option<Self> ⓘ
Returns the identity matrix, or None
if the matrix is not square.
Sourcepub const fn identity_unchecked() -> Self
pub const fn identity_unchecked() -> Self
Sourcepub const fn mul<const C2: usize, const LEN2: usize>(
&self,
other: &Matrix<f64, C, C2, LEN2, true, MAX_LEN_DET>,
) -> Matrix<f64, R, C2, LEN2, true, MAX_LEN_DET>
pub const fn mul<const C2: usize, const LEN2: usize>( &self, other: &Matrix<f64, C, C2, LEN2, true, MAX_LEN_DET>, ) -> Matrix<f64, R, C2, LEN2, true, MAX_LEN_DET>
Computes the matrix product (R × C) * (C × C2) = (R × C2) = LEN2.
Sourcepub const fn determinant(&self) -> Option<f64> ⓘ
pub const fn determinant(&self) -> Option<f64> ⓘ
Returns the determinant if the matrix is square, or None
otherwise.
§Panics
- If called on a non-square matrix in debug mode, it will panic.
Sourcepub const fn determinant_unchecked(&self) -> f64 ⓘ
pub const fn determinant_unchecked(&self) -> f64 ⓘ
Returns the determinant without checking matrix squareness.
§Panics
- Panics in debug mode if
R != C
(non-square matrix). - May panic on overflow for integer types.
Sourcepub const fn submatrix(
n: usize,
row: usize,
col: usize,
matrix: &[f64],
buffer: &mut [f64],
)
pub const fn submatrix( n: usize, row: usize, col: usize, matrix: &[f64], buffer: &mut [f64], )
Extracts a (D-1)x(D-1)
submatrix by removing the given row and column.
Arguments
n
: Matrix dimension.row
,col
: The row and column to exclude.matrix
: Source matrix in row-major order.buffer
: Target buffer to store the submatrix.
§Panics
Panics in debug mode if buffer.len() < (n-1)*(n-1)
.
Sourcepub const fn submatrix_determinant(
dim: usize,
matrix: &[f64],
buffer: &mut [f64],
) -> f64 ⓘ
pub const fn submatrix_determinant( dim: usize, matrix: &[f64], buffer: &mut [f64], ) -> f64 ⓘ
Computes the determinant of a square matrix using Laplace expansion.
This method is only valid for square matrices of size dim × dim
and is intended for cases where dim > 3
.
How it works:
- Expands along the first row using minors (submatrices).
- Recursively computes determinants of
(dim-1)×(dim-1)
matrices.
Notes:
- Uses a temporary
buffer
to avoid repeated allocations. - The
buffer
must be at least(dim-1)^2 + (dim-2)^2
elements long. MAX_LEN_DET
defines the upper bound for buffer size.- It has `O(N!) factorial time complexity due to recursive expansion.
§Panics
- Panics in debug mode if
buffer.len()
is insufficient. - Panics if matrix is not square (should never happen when used internally).
Sourcepub const fn at(&self, row: usize, col: usize) -> f64 ⓘ
pub const fn at(&self, row: usize, col: usize) -> f64 ⓘ
Returns an immutable reference to the element at (row
, col
).
Auto Trait Implementations§
impl<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool, const MAX_LEN_DET: usize> Freeze for Matrix<T, R, C, LEN, RMAJ, MAX_LEN_DET>where
T: Freeze,
impl<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool, const MAX_LEN_DET: usize> RefUnwindSafe for Matrix<T, R, C, LEN, RMAJ, MAX_LEN_DET>where
T: RefUnwindSafe,
impl<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool, const MAX_LEN_DET: usize> Send for Matrix<T, R, C, LEN, RMAJ, MAX_LEN_DET>where
T: Send,
impl<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool, const MAX_LEN_DET: usize> Sync for Matrix<T, R, C, LEN, RMAJ, MAX_LEN_DET>where
T: Sync,
impl<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool, const MAX_LEN_DET: usize> Unpin for Matrix<T, R, C, LEN, RMAJ, MAX_LEN_DET>where
T: Unpin,
impl<T, const R: usize, const C: usize, const LEN: usize, const RMAJ: bool, const MAX_LEN_DET: usize> UnwindSafe for Matrix<T, R, C, LEN, RMAJ, MAX_LEN_DET>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize
fn byte_align(&self) -> usize
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn type_hash_with<H: Hasher>(&self, hasher: H) -> u64
fn type_hash_with<H: Hasher>(&self, hasher: H) -> u64
TypeId
of Self
using a custom hasher.Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of<T>() -> usize
fn mem_align_of<T>() -> usize
Source§fn mem_align_of_val(&self) -> usize
fn mem_align_of_val(&self) -> usize
Source§fn mem_size_of<T>() -> usize
fn mem_size_of<T>() -> usize
Source§fn mem_size_of_val(&self) -> usize
fn mem_size_of_val(&self) -> usize
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more