Struct Span
pub struct Span { /* private fields */ }
dep_tracing
and alloc
only.Expand description
A handle representing a span, with the capability to enter the span if it exists.
If the span was rejected by the current Subscriber
’s filter, entering the
span will silently do nothing. Thus, the handle can be used in the same
manner regardless of whether or not the trace is currently being collected.
Implementations§
§impl Span
impl Span
pub fn new(meta: &'static Metadata<'static>, values: &ValueSet<'_>) -> Span
pub fn new(meta: &'static Metadata<'static>, values: &ValueSet<'_>) -> Span
Constructs a new Span
with the given metadata and set of
field values.
The new span will be constructed by the currently-active Subscriber
,
with the current span as its parent (if one exists).
After the span is constructed, field values and/or follows_from
annotations may be added to it.
pub fn new_root(meta: &'static Metadata<'static>, values: &ValueSet<'_>) -> Span
pub fn new_root(meta: &'static Metadata<'static>, values: &ValueSet<'_>) -> Span
Constructs a new Span
as the root of its own trace tree, with the
given metadata and set of field values.
After the span is constructed, field values and/or follows_from
annotations may be added to it.
pub fn child_of(
parent: impl Into<Option<Id>>,
meta: &'static Metadata<'static>,
values: &ValueSet<'_>,
) -> Span
pub fn child_of( parent: impl Into<Option<Id>>, meta: &'static Metadata<'static>, values: &ValueSet<'_>, ) -> Span
Constructs a new Span
as child of the given parent span, with the
given metadata and set of field values.
After the span is constructed, field values and/or follows_from
annotations may be added to it.
pub fn new_disabled(meta: &'static Metadata<'static>) -> Span
pub fn new_disabled(meta: &'static Metadata<'static>) -> Span
Constructs a new disabled span with the given Metadata
.
This should be used when a span is constructed from a known callsite, but the subscriber indicates that it is disabled.
Entering, exiting, and recording values on this span will not notify the
Subscriber
but may record log messages if the log
feature flag is
enabled.
pub const fn none() -> Span
pub const fn none() -> Span
Constructs a new span that is completely disabled.
This can be used rather than Option<Span>
to represent cases where a
span is not present.
Entering, exiting, and recording values on this span will do nothing.
pub fn current() -> Span
pub fn current() -> Span
Returns a handle to the span considered by the Subscriber
to be the
current span.
If the subscriber indicates that it does not track the current span, or that the thread from which this function is called is not currently inside a span, the returned span will be disabled.
pub fn enter(&self) -> Entered<'_>
pub fn enter(&self) -> Entered<'_>
Enters this span, returning a guard that will exit the span when dropped.
If this span is enabled by the current subscriber, then this function will
call Subscriber::enter
with the span’s Id
, and dropping the guard
will call Subscriber::exit
. If the span is disabled, this does
nothing.
§In Asynchronous Code
Warning: in asynchronous code that uses async/await syntax,
Span::enter
should be used very carefully or avoided entirely. Holding
the drop guard returned by Span::enter
across .await
points will
result in incorrect traces. For example,
async fn my_async_function() {
let span = info_span!("my_async_function");
// WARNING: This span will remain entered until this
// guard is dropped...
let _enter = span.enter();
// ...but the `await` keyword may yield, causing the
// runtime to switch to another task, while remaining in
// this span!
some_other_async_function().await
// ...
}
The drop guard returned by Span::enter
exits the span when it is
dropped. When an async function or async block yields at an .await
point, the current scope is exited, but values in that scope are
not dropped (because the async block will eventually resume
execution from that await point). This means that another task will
begin executing while remaining in the entered span. This results in
an incorrect trace.
Instead of using Span::enter
in asynchronous code, prefer the
following:
-
To enter a span for a synchronous section of code within an async block or function, prefer
Span::in_scope
. Sincein_scope
takes a synchronous closure and exits the span when the closure returns, the span will always be exited before the next await point. For example:async fn my_async_function() { let span = info_span!("my_async_function"); let some_value = span.in_scope(|| { // run some synchronous code inside the span... }); // This is okay! The span has already been exited before we reach // the await point. some_other_async_function(some_value).await; // ... }
-
For instrumenting asynchronous code,
tracing
provides theFuture::instrument
combinator for attaching a span to a future (async function or block). This will enter the span every time the future is polled, and exit it whenever the future yields.Instrument
can be used with an async block inside an async function:ⓘuse tracing::Instrument; async fn my_async_function() { let span = info_span!("my_async_function"); async move { // This is correct! If we yield here, the span will be exited, // and re-entered when we resume. some_other_async_function().await; //more asynchronous code inside the span... } // instrument the async block with the span... .instrument(span) // ...and await it. .await }
It can also be used to instrument calls to async functions at the callsite:
ⓘuse tracing::Instrument; async fn my_async_function() { let some_value = some_other_async_function() .instrument(debug_span!("some_other_async_function")) .await; // ... }
-
The
#[instrument]
attribute macro can automatically generate correct code when used on an async function:ⓘ#[tracing::instrument(level = "info")] async fn my_async_function() { // This is correct! If we yield here, the span will be exited, // and re-entered when we resume. some_other_async_function().await; // ... }
§Examples
let span = span!(Level::INFO, "my_span");
let guard = span.enter();
// code here is within the span
drop(guard);
// code here is no longer within the span
Guards need not be explicitly dropped:
fn my_function() -> String {
// enter a span for the duration of this function.
let span = trace_span!("my_function");
let _enter = span.enter();
// anything happening in functions we call is still inside the span...
my_other_function();
// returning from the function drops the guard, exiting the span.
return "Hello world".to_owned();
}
fn my_other_function() {
// ...
}
Sub-scopes may be created to limit the duration for which the span is entered:
let span = info_span!("my_great_span");
{
let _enter = span.enter();
// this event occurs inside the span.
info!("i'm in the span!");
// exiting the scope drops the guard, exiting the span.
}
// this event is not inside the span.
info!("i'm outside the span!")
pub fn entered(self) -> EnteredSpan
pub fn entered(self) -> EnteredSpan
Enters this span, consuming it and returning a guard that will exit the span when dropped.
Warning: In asynchronous code that uses async/await syntax,Span::entered
may produce incorrect traces if the returned drop guard is held across an await point. See theSpan::enter
documentation for details.
If this span is enabled by the current subscriber, then this function will
call Subscriber::enter
with the span’s Id
, and dropping the guard
will call Subscriber::exit
. If the span is disabled, this does
nothing.
This is similar to the Span::enter
method, except that it moves the
span by value into the returned guard, rather than borrowing it.
Therefore, this method can be used to create and enter a span in a
single expression, without requiring a let
-binding. For example:
let _span = info_span!("something_interesting").entered();
rather than:
let span = info_span!("something_interesting");
let _e = span.enter();
Furthermore, entered
may be used when the span must be stored in some
other struct or be passed to a function while remaining entered.
Note: The returnedEnteredSpan
guard does not implementSend
. Dropping the guard will exit this span, and if the guard is sent to another thread and dropped there, that thread may never have entered this span. Thus,EnteredSpan
s should not be sent between threads.
§Examples
The returned guard can be explicitly exited, returning the un-entered span:
let span = span!(Level::INFO, "doing_something").entered();
// code here is within the span
// explicitly exit the span, returning it
let span = span.exit();
// code here is no longer within the span
// enter the span again
let span = span.entered();
// now we are inside the span once again
Guards need not be explicitly dropped:
fn my_function() -> String {
// enter a span for the duration of this function.
let span = trace_span!("my_function").entered();
// anything happening in functions we call is still inside the span...
my_other_function();
// returning from the function drops the guard, exiting the span.
return "Hello world".to_owned();
}
fn my_other_function() {
// ...
}
Since the EnteredSpan
guard can dereference to the Span
itself,
the span may still be accessed while entered. For example:
use tracing::field;
// create the span with an empty field, and enter it.
let span = info_span!("my_span", some_field = field::Empty).entered();
// we can still record a value for the field while the span is entered.
span.record("some_field", &"hello world!");
pub fn or_current(self) -> Span
pub fn or_current(self) -> Span
Returns this span, if it was enabled by the current Subscriber
, or
the current span (whose lexical distance may be further than expected),
if this span is disabled.
This method can be useful when propagating spans to spawned threads or async tasks. Consider the following:
let _parent_span = tracing::info_span!("parent").entered();
// ...
let child_span = tracing::debug_span!("child");
std::thread::spawn(move || {
let _entered = child_span.entered();
tracing::info!("spawned a thread!");
// ...
});
If the current Subscriber
enables the DEBUG
level, then both
the “parent” and “child” spans will be enabled. Thus, when the “spawaned
a thread!” event occurs, it will be inside of the “child” span. Because
“parent” is the parent of “child”, the event will also be inside of
“parent”.
However, if the Subscriber
only enables the INFO
level, the “child”
span will be disabled. When the thread is spawned, the
child_span.entered()
call will do nothing, since “child” is not
enabled. In this case, the “spawned a thread!” event occurs outside of
any span, since the “child” span was responsible for propagating its
parent to the spawned thread.
If this is not the desired behavior, Span::or_current
can be used to
ensure that the “parent” span is propagated in both cases, either as a
parent of “child” or directly. For example:
let _parent_span = tracing::info_span!("parent").entered();
// ...
// If DEBUG is enabled, then "child" will be enabled, and `or_current`
// returns "child". Otherwise, if DEBUG is not enabled, "child" will be
// disabled, and `or_current` returns "parent".
let child_span = tracing::debug_span!("child").or_current();
std::thread::spawn(move || {
let _entered = child_span.entered();
tracing::info!("spawned a thread!");
// ...
});
When spawning asynchronous tasks, Span::or_current
can
be used similarly, in combination with instrument
:
use tracing::Instrument;
let _parent_span = tracing::info_span!("parent").entered();
// ...
let child_span = tracing::debug_span!("child");
tokio::spawn(
async {
tracing::info!("spawned a task!");
// ...
}.instrument(child_span.or_current())
);
In general, or_current
should be preferred over nesting an
instrument
call inside of an in_current_span
call, as using
or_current
will be more efficient.
use tracing::Instrument;
async fn my_async_fn() {
// ...
}
let _parent_span = tracing::info_span!("parent").entered();
// Do this:
tokio::spawn(
my_async_fn().instrument(tracing::debug_span!("child").or_current())
);
// ...rather than this:
tokio::spawn(
my_async_fn()
.instrument(tracing::debug_span!("child"))
.in_current_span()
);
pub fn in_scope<F, T>(&self, f: F) -> Twhere
F: FnOnce() -> T,
pub fn in_scope<F, T>(&self, f: F) -> Twhere
F: FnOnce() -> T,
Executes the given function in the context of this span.
If this span is enabled, then this function enters the span, invokes f
and then exits the span. If the span is disabled, f
will still be
invoked, but in the context of the currently-executing span (if there is
one).
Returns the result of evaluating f
.
§Examples
let my_span = span!(Level::TRACE, "my_span");
my_span.in_scope(|| {
// this event occurs within the span.
trace!("i'm in the span!");
});
// this event occurs outside the span.
trace!("i'm not in the span!");
Calling a function and returning the result:
fn hello_world() -> String {
"Hello world!".to_owned()
}
let span = info_span!("hello_world");
// the span will be entered for the duration of the call to
// `hello_world`.
let a_string = span.in_scope(hello_world);
pub fn field<Q>(&self, field: &Q) -> Option<Field> ⓘ
pub fn field<Q>(&self, field: &Q) -> Option<Field> ⓘ
Returns a Field
for the field with the
given name
, if one exists,
pub fn has_field<Q>(&self, field: &Q) -> bool
pub fn has_field<Q>(&self, field: &Q) -> bool
Returns true if this Span
has a field for the given
Field
or field name.
pub fn record<Q, V>(&self, field: &Q, value: V) -> &Span
pub fn record<Q, V>(&self, field: &Q, value: V) -> &Span
Records that the field described by field
has the value value
.
This may be used with field::Empty
to declare fields whose values
are not known when the span is created, and record them later:
use tracing::{trace_span, field};
// Create a span with two fields: `greeting`, with the value "hello world", and
// `parting`, without a value.
let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
// ...
// Now, record a value for parting as well.
// (note that the field name is passed as a string slice)
span.record("parting", "goodbye world!");
However, it may also be used to record a new value for a field whose value was already recorded:
use tracing::info_span;
// Initially, let's assume that our attempt to do something is going okay...
let span = info_span!("doing_something", is_okay = true);
let _e = span.enter();
match do_something() {
Ok(something) => {
// ...
}
Err(_) => {
// Things are no longer okay!
span.record("is_okay", false);
}
}
Note: The fields associated with a span are part of itsMetadata
. TheMetadata
describing a particular span is constructed statically when the span is created and cannot be extended later to add new fields. Therefore, you cannot record a value for a field that was not specified when the span was created:
use tracing::{trace_span, field};
// Create a span with two fields: `greeting`, with the value "hello world", and
// `parting`, without a value.
let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
// ...
// Now, you try to record a value for a new field, `new_field`, which was not
// declared as `Empty` or populated when you created `span`.
// You won't get any error, but the assignment will have no effect!
span.record("new_field", "interesting_value_you_really_need");
// Instead, all fields that may be recorded after span creation should be declared up front,
// using field::Empty when a value is not known, as we did for `parting`.
// This `record` call will indeed replace field::Empty with "you will be remembered".
span.record("parting", "you will be remembered");
pub fn record_all(&self, values: &ValueSet<'_>) -> &Span
pub fn record_all(&self, values: &ValueSet<'_>) -> &Span
Records all the fields in the provided ValueSet
.
pub fn is_disabled(&self) -> bool
pub fn is_disabled(&self) -> bool
Returns true
if this span was disabled by the subscriber and does not
exist.
See also is_none
.
pub fn is_none(&self) -> bool
pub fn is_none(&self) -> bool
Returns true
if this span was constructed by Span::none
and is
empty.
If is_none
returns true
for a given span, then is_disabled
will
also return true
. However, when a span is disabled by the subscriber
rather than constructed by Span::none
, this method will return
false
, while is_disabled
will return true
.
pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Span
pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Span
Indicates that the span with the given ID has an indirect causal relationship with this span.
This relationship differs somewhat from the parent-child relationship: a span may have any number of prior spans, rather than a single one; and spans are not considered to be executing inside of the spans they follow from. This means that a span may close even if subsequent spans that follow from it are still open, and time spent inside of a subsequent span should not be included in the time its precedents were executing. This is used to model causal relationships such as when a single future spawns several related background tasks, et cetera.
If this span is disabled, or the resulting follows-from relationship would be invalid, this function will do nothing.
§Examples
Setting a follows_from
relationship with a Span
:
let span1 = span!(Level::INFO, "span_1");
let span2 = span!(Level::DEBUG, "span_2");
span2.follows_from(span1);
Setting a follows_from
relationship with the current span:
let span = span!(Level::INFO, "hello!");
span.follows_from(Span::current());
Setting a follows_from
relationship with a Span
reference:
let span = span!(Level::INFO, "hello!");
let curr = Span::current();
span.follows_from(&curr);
Setting a follows_from
relationship with an Id
:
let span = span!(Level::INFO, "hello!");
let id = span.id();
span.follows_from(id);
pub fn metadata(&self) -> Option<&'static Metadata<'static>> ⓘ
pub fn metadata(&self) -> Option<&'static Metadata<'static>> ⓘ
Returns this span’s Metadata
, if it is enabled.
pub fn with_subscriber<T>(
&self,
f: impl FnOnce((&Id, &Dispatch)) -> T,
) -> Option<T> ⓘ
pub fn with_subscriber<T>( &self, f: impl FnOnce((&Id, &Dispatch)) -> T, ) -> Option<T> ⓘ
Invokes a function with a reference to this span’s ID and subscriber.
if this span is enabled, the provided function is called, and the result is returned.
If the span is disabled, the function is not called, and this method returns None
instead.
Trait Implementations§
Auto Trait Implementations§
impl Freeze for Span
impl !RefUnwindSafe for Span
impl Send for Span
impl Sync for Span
impl Unpin for Span
impl !UnwindSafe for Span
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.