pub enum Either<L, R> {
Left(L),
Right(R),
}
dep_itertools
only.Expand description
The enum Either
with variants Left
and Right
is a general purpose
sum type with two cases.
The Either
type is symmetric and treats its variants the same way, without
preference.
(For representing success or error, use the regular Result
enum instead.)
Variants§
Implementations§
Source§impl<L, R> Either<L, R>
impl<L, R> Either<L, R>
Sourcepub fn is_left(&self) -> bool
pub fn is_left(&self) -> bool
Return true if the value is the Left
variant.
use either::*;
let values = [Left(1), Right("the right value")];
assert_eq!(values[0].is_left(), true);
assert_eq!(values[1].is_left(), false);
Sourcepub fn is_right(&self) -> bool
pub fn is_right(&self) -> bool
Return true if the value is the Right
variant.
use either::*;
let values = [Left(1), Right("the right value")];
assert_eq!(values[0].is_right(), false);
assert_eq!(values[1].is_right(), true);
Sourcepub fn left(self) -> Option<L> ⓘ
pub fn left(self) -> Option<L> ⓘ
Convert the left side of Either<L, R>
to an Option<L>
.
use either::*;
let left: Either<_, ()> = Left("some value");
assert_eq!(left.left(), Some("some value"));
let right: Either<(), _> = Right(321);
assert_eq!(right.left(), None);
Sourcepub fn right(self) -> Option<R> ⓘ
pub fn right(self) -> Option<R> ⓘ
Convert the right side of Either<L, R>
to an Option<R>
.
use either::*;
let left: Either<_, ()> = Left("some value");
assert_eq!(left.right(), None);
let right: Either<(), _> = Right(321);
assert_eq!(right.right(), Some(321));
Sourcepub fn as_ref(&self) -> Either<&L, &R> ⓘ
pub fn as_ref(&self) -> Either<&L, &R> ⓘ
Convert &Either<L, R>
to Either<&L, &R>
.
use either::*;
let left: Either<_, ()> = Left("some value");
assert_eq!(left.as_ref(), Left(&"some value"));
let right: Either<(), _> = Right("some value");
assert_eq!(right.as_ref(), Right(&"some value"));
Sourcepub fn as_mut(&mut self) -> Either<&mut L, &mut R> ⓘ
pub fn as_mut(&mut self) -> Either<&mut L, &mut R> ⓘ
Convert &mut Either<L, R>
to Either<&mut L, &mut R>
.
use either::*;
fn mutate_left(value: &mut Either<u32, u32>) {
if let Some(l) = value.as_mut().left() {
*l = 999;
}
}
let mut left = Left(123);
let mut right = Right(123);
mutate_left(&mut left);
mutate_left(&mut right);
assert_eq!(left, Left(999));
assert_eq!(right, Right(123));
Sourcepub fn as_pin_ref(self: Pin<&Either<L, R>>) -> Either<Pin<&L>, Pin<&R>> ⓘ
pub fn as_pin_ref(self: Pin<&Either<L, R>>) -> Either<Pin<&L>, Pin<&R>> ⓘ
Convert Pin<&Either<L, R>>
to Either<Pin<&L>, Pin<&R>>
,
pinned projections of the inner variants.
Sourcepub fn as_pin_mut(
self: Pin<&mut Either<L, R>>,
) -> Either<Pin<&mut L>, Pin<&mut R>> ⓘ
pub fn as_pin_mut( self: Pin<&mut Either<L, R>>, ) -> Either<Pin<&mut L>, Pin<&mut R>> ⓘ
Convert Pin<&mut Either<L, R>>
to Either<Pin<&mut L>, Pin<&mut R>>
,
pinned projections of the inner variants.
Sourcepub fn flip(self) -> Either<R, L> ⓘ
pub fn flip(self) -> Either<R, L> ⓘ
Convert Either<L, R>
to Either<R, L>
.
use either::*;
let left: Either<_, ()> = Left(123);
assert_eq!(left.flip(), Right(123));
let right: Either<(), _> = Right("some value");
assert_eq!(right.flip(), Left("some value"));
Sourcepub fn map_left<F, M>(self, f: F) -> Either<M, R> ⓘwhere
F: FnOnce(L) -> M,
pub fn map_left<F, M>(self, f: F) -> Either<M, R> ⓘwhere
F: FnOnce(L) -> M,
Apply the function f
on the value in the Left
variant if it is present rewrapping the
result in Left
.
use either::*;
let left: Either<_, u32> = Left(123);
assert_eq!(left.map_left(|x| x * 2), Left(246));
let right: Either<u32, _> = Right(123);
assert_eq!(right.map_left(|x| x * 2), Right(123));
Sourcepub fn map_right<F, S>(self, f: F) -> Either<L, S> ⓘwhere
F: FnOnce(R) -> S,
pub fn map_right<F, S>(self, f: F) -> Either<L, S> ⓘwhere
F: FnOnce(R) -> S,
Apply the function f
on the value in the Right
variant if it is present rewrapping the
result in Right
.
use either::*;
let left: Either<_, u32> = Left(123);
assert_eq!(left.map_right(|x| x * 2), Left(123));
let right: Either<u32, _> = Right(123);
assert_eq!(right.map_right(|x| x * 2), Right(246));
Sourcepub fn map_either<F, G, M, S>(self, f: F, g: G) -> Either<M, S> ⓘ
pub fn map_either<F, G, M, S>(self, f: F, g: G) -> Either<M, S> ⓘ
Apply the functions f
and g
to the Left
and Right
variants
respectively. This is equivalent to
bimap
in functional programming.
use either::*;
let f = |s: String| s.len();
let g = |u: u8| u.to_string();
let left: Either<String, u8> = Left("loopy".into());
assert_eq!(left.map_either(f, g), Left(5));
let right: Either<String, u8> = Right(42);
assert_eq!(right.map_either(f, g), Right("42".into()));
Sourcepub fn map_either_with<Ctx, F, G, M, S>(
self,
ctx: Ctx,
f: F,
g: G,
) -> Either<M, S> ⓘ
pub fn map_either_with<Ctx, F, G, M, S>( self, ctx: Ctx, f: F, g: G, ) -> Either<M, S> ⓘ
Similar to map_either
, with an added context ctx
accessible to
both functions.
use either::*;
let mut sum = 0;
// Both closures want to update the same value, so pass it as context.
let mut f = |sum: &mut usize, s: String| { *sum += s.len(); s.to_uppercase() };
let mut g = |sum: &mut usize, u: usize| { *sum += u; u.to_string() };
let left: Either<String, usize> = Left("loopy".into());
assert_eq!(left.map_either_with(&mut sum, &mut f, &mut g), Left("LOOPY".into()));
let right: Either<String, usize> = Right(42);
assert_eq!(right.map_either_with(&mut sum, &mut f, &mut g), Right("42".into()));
assert_eq!(sum, 47);
Sourcepub fn either<F, G, T>(self, f: F, g: G) -> T
pub fn either<F, G, T>(self, f: F, g: G) -> T
Apply one of two functions depending on contents, unifying their result. If the value is
Left(L)
then the first function f
is applied; if it is Right(R)
then the second
function g
is applied.
use either::*;
fn square(n: u32) -> i32 { (n * n) as i32 }
fn negate(n: i32) -> i32 { -n }
let left: Either<u32, i32> = Left(4);
assert_eq!(left.either(square, negate), 16);
let right: Either<u32, i32> = Right(-4);
assert_eq!(right.either(square, negate), 4);
Sourcepub fn either_with<Ctx, F, G, T>(self, ctx: Ctx, f: F, g: G) -> T
pub fn either_with<Ctx, F, G, T>(self, ctx: Ctx, f: F, g: G) -> T
Like either
, but provide some context to whichever of the
functions ends up being called.
// In this example, the context is a mutable reference
use either::*;
let mut result = Vec::new();
let values = vec![Left(2), Right(2.7)];
for value in values {
value.either_with(&mut result,
|ctx, integer| ctx.push(integer),
|ctx, real| ctx.push(f64::round(real) as i32));
}
assert_eq!(result, vec![2, 3]);
Sourcepub fn left_and_then<F, S>(self, f: F) -> Either<S, R> ⓘ
pub fn left_and_then<F, S>(self, f: F) -> Either<S, R> ⓘ
Apply the function f
on the value in the Left
variant if it is present.
use either::*;
let left: Either<_, u32> = Left(123);
assert_eq!(left.left_and_then::<_,()>(|x| Right(x * 2)), Right(246));
let right: Either<u32, _> = Right(123);
assert_eq!(right.left_and_then(|x| Right::<(), _>(x * 2)), Right(123));
Sourcepub fn right_and_then<F, S>(self, f: F) -> Either<L, S> ⓘ
pub fn right_and_then<F, S>(self, f: F) -> Either<L, S> ⓘ
Apply the function f
on the value in the Right
variant if it is present.
use either::*;
let left: Either<_, u32> = Left(123);
assert_eq!(left.right_and_then(|x| Right(x * 2)), Left(123));
let right: Either<u32, _> = Right(123);
assert_eq!(right.right_and_then(|x| Right(x * 2)), Right(246));
Sourcepub fn into_iter(
self,
) -> Either<<L as IntoIterator>::IntoIter, <R as IntoIterator>::IntoIter> ⓘ
pub fn into_iter( self, ) -> Either<<L as IntoIterator>::IntoIter, <R as IntoIterator>::IntoIter> ⓘ
Convert the inner value to an iterator.
This requires the Left
and Right
iterators to have the same item type.
See factor_into_iter
to iterate different types.
use either::*;
let left: Either<_, Vec<u32>> = Left(vec![1, 2, 3, 4, 5]);
let mut right: Either<Vec<u32>, _> = Right(vec![]);
right.extend(left.into_iter());
assert_eq!(right, Right(vec![1, 2, 3, 4, 5]));
Sourcepub fn iter(
&self,
) -> Either<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter> ⓘwhere
&'a L: for<'a> IntoIterator,
&'a R: for<'a> IntoIterator<Item = <&'a L as IntoIterator>::Item>,
pub fn iter(
&self,
) -> Either<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter> ⓘwhere
&'a L: for<'a> IntoIterator,
&'a R: for<'a> IntoIterator<Item = <&'a L as IntoIterator>::Item>,
Borrow the inner value as an iterator.
This requires the Left
and Right
iterators to have the same item type.
See factor_iter
to iterate different types.
use either::*;
let left: Either<_, &[u32]> = Left(vec![2, 3]);
let mut right: Either<Vec<u32>, _> = Right(&[4, 5][..]);
let mut all = vec![1];
all.extend(left.iter());
all.extend(right.iter());
assert_eq!(all, vec![1, 2, 3, 4, 5]);
Sourcepub fn iter_mut(
&mut self,
) -> Either<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter> ⓘwhere
&'a mut L: for<'a> IntoIterator,
&'a mut R: for<'a> IntoIterator<Item = <&'a mut L as IntoIterator>::Item>,
pub fn iter_mut(
&mut self,
) -> Either<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter> ⓘwhere
&'a mut L: for<'a> IntoIterator,
&'a mut R: for<'a> IntoIterator<Item = <&'a mut L as IntoIterator>::Item>,
Mutably borrow the inner value as an iterator.
This requires the Left
and Right
iterators to have the same item type.
See factor_iter_mut
to iterate different types.
use either::*;
let mut left: Either<_, &mut [u32]> = Left(vec![2, 3]);
for l in left.iter_mut() {
*l *= *l
}
assert_eq!(left, Left(vec![4, 9]));
let mut inner = [4, 5];
let mut right: Either<Vec<u32>, _> = Right(&mut inner[..]);
for r in right.iter_mut() {
*r *= *r
}
assert_eq!(inner, [16, 25]);
Sourcepub fn factor_into_iter(
self,
) -> IterEither<<L as IntoIterator>::IntoIter, <R as IntoIterator>::IntoIter> ⓘwhere
L: IntoIterator,
R: IntoIterator,
pub fn factor_into_iter(
self,
) -> IterEither<<L as IntoIterator>::IntoIter, <R as IntoIterator>::IntoIter> ⓘwhere
L: IntoIterator,
R: IntoIterator,
Converts an Either
of Iterator
s to be an Iterator
of Either
s
Unlike into_iter
, this does not require the
Left
and Right
iterators to have the same item type.
use either::*;
let left: Either<_, Vec<u8>> = Left(&["hello"]);
assert_eq!(left.factor_into_iter().next(), Some(Left(&"hello")));
let right: Either<&[&str], _> = Right(vec![0, 1]);
assert_eq!(right.factor_into_iter().collect::<Vec<_>>(), vec![Right(0), Right(1)]);
Sourcepub fn factor_iter(
&self,
) -> IterEither<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter> ⓘ
pub fn factor_iter( &self, ) -> IterEither<<&L as IntoIterator>::IntoIter, <&R as IntoIterator>::IntoIter> ⓘ
Borrows an Either
of Iterator
s to be an Iterator
of Either
s
Unlike iter
, this does not require the
Left
and Right
iterators to have the same item type.
use either::*;
let left: Either<_, Vec<u8>> = Left(["hello"]);
assert_eq!(left.factor_iter().next(), Some(Left(&"hello")));
let right: Either<[&str; 2], _> = Right(vec![0, 1]);
assert_eq!(right.factor_iter().collect::<Vec<_>>(), vec![Right(&0), Right(&1)]);
Sourcepub fn factor_iter_mut(
&mut self,
) -> IterEither<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter> ⓘ
pub fn factor_iter_mut( &mut self, ) -> IterEither<<&mut L as IntoIterator>::IntoIter, <&mut R as IntoIterator>::IntoIter> ⓘ
Mutably borrows an Either
of Iterator
s to be an Iterator
of Either
s
Unlike iter_mut
, this does not require the
Left
and Right
iterators to have the same item type.
use either::*;
let mut left: Either<_, Vec<u8>> = Left(["hello"]);
left.factor_iter_mut().for_each(|x| *x.unwrap_left() = "goodbye");
assert_eq!(left, Left(["goodbye"]));
let mut right: Either<[&str; 2], _> = Right(vec![0, 1, 2]);
right.factor_iter_mut().for_each(|x| if let Right(r) = x { *r = -*r; });
assert_eq!(right, Right(vec![0, -1, -2]));
Sourcepub fn left_or(self, other: L) -> L
pub fn left_or(self, other: L) -> L
Return left value or given value
Arguments passed to left_or
are eagerly evaluated; if you are passing
the result of a function call, it is recommended to use
left_or_else
, which is lazily evaluated.
§Examples
let left: Either<&str, &str> = Left("left");
assert_eq!(left.left_or("foo"), "left");
let right: Either<&str, &str> = Right("right");
assert_eq!(right.left_or("left"), "left");
Sourcepub fn left_or_default(self) -> Lwhere
L: Default,
pub fn left_or_default(self) -> Lwhere
L: Default,
Return left or a default
§Examples
let left: Either<String, u32> = Left("left".to_string());
assert_eq!(left.left_or_default(), "left");
let right: Either<String, u32> = Right(42);
assert_eq!(right.left_or_default(), String::default());
Sourcepub fn left_or_else<F>(self, f: F) -> Lwhere
F: FnOnce(R) -> L,
pub fn left_or_else<F>(self, f: F) -> Lwhere
F: FnOnce(R) -> L,
Returns left value or computes it from a closure
§Examples
let left: Either<String, u32> = Left("3".to_string());
assert_eq!(left.left_or_else(|_| unreachable!()), "3");
let right: Either<String, u32> = Right(3);
assert_eq!(right.left_or_else(|x| x.to_string()), "3");
Sourcepub fn right_or(self, other: R) -> R
pub fn right_or(self, other: R) -> R
Return right value or given value
Arguments passed to right_or
are eagerly evaluated; if you are passing
the result of a function call, it is recommended to use
right_or_else
, which is lazily evaluated.
§Examples
let right: Either<&str, &str> = Right("right");
assert_eq!(right.right_or("foo"), "right");
let left: Either<&str, &str> = Left("left");
assert_eq!(left.right_or("right"), "right");
Sourcepub fn right_or_default(self) -> Rwhere
R: Default,
pub fn right_or_default(self) -> Rwhere
R: Default,
Return right or a default
§Examples
let left: Either<String, u32> = Left("left".to_string());
assert_eq!(left.right_or_default(), u32::default());
let right: Either<String, u32> = Right(42);
assert_eq!(right.right_or_default(), 42);
Sourcepub fn right_or_else<F>(self, f: F) -> Rwhere
F: FnOnce(L) -> R,
pub fn right_or_else<F>(self, f: F) -> Rwhere
F: FnOnce(L) -> R,
Returns right value or computes it from a closure
§Examples
let left: Either<String, u32> = Left("3".to_string());
assert_eq!(left.right_or_else(|x| x.parse().unwrap()), 3);
let right: Either<String, u32> = Right(3);
assert_eq!(right.right_or_else(|_| unreachable!()), 3);
Sourcepub fn unwrap_left(self) -> Lwhere
R: Debug,
pub fn unwrap_left(self) -> Lwhere
R: Debug,
Sourcepub fn unwrap_right(self) -> Rwhere
L: Debug,
pub fn unwrap_right(self) -> Rwhere
L: Debug,
Sourcepub fn expect_left(self, msg: &str) -> Lwhere
R: Debug,
pub fn expect_left(self, msg: &str) -> Lwhere
R: Debug,
Sourcepub fn expect_right(self, msg: &str) -> Rwhere
L: Debug,
pub fn expect_right(self, msg: &str) -> Rwhere
L: Debug,
Sourcepub fn either_into<T>(self) -> T
pub fn either_into<T>(self) -> T
Convert the contained value into T
§Examples
// Both u16 and u32 can be converted to u64.
let left: Either<u16, u32> = Left(3u16);
assert_eq!(left.either_into::<u64>(), 3u64);
let right: Either<u16, u32> = Right(7u32);
assert_eq!(right.either_into::<u64>(), 7u64);
Source§impl<L, R> Either<Option<L>, Option<R>>
impl<L, R> Either<Option<L>, Option<R>>
Sourcepub fn factor_none(self) -> Option<Either<L, R>> ⓘ
pub fn factor_none(self) -> Option<Either<L, R>> ⓘ
Factors out None
from an Either
of Option
.
use either::*;
let left: Either<_, Option<String>> = Left(Some(vec![0]));
assert_eq!(left.factor_none(), Some(Left(vec![0])));
let right: Either<Option<Vec<u8>>, _> = Right(Some(String::new()));
assert_eq!(right.factor_none(), Some(Right(String::new())));
Source§impl<L, R, E> Either<Result<L, E>, Result<R, E>>
impl<L, R, E> Either<Result<L, E>, Result<R, E>>
Sourcepub fn factor_err(self) -> Result<Either<L, R>, E> ⓘ
pub fn factor_err(self) -> Result<Either<L, R>, E> ⓘ
Factors out a homogenous type from an Either
of Result
.
Here, the homogeneous type is the Err
type of the Result
.
use either::*;
let left: Either<_, Result<String, u32>> = Left(Ok(vec![0]));
assert_eq!(left.factor_err(), Ok(Left(vec![0])));
let right: Either<Result<Vec<u8>, u32>, _> = Right(Ok(String::new()));
assert_eq!(right.factor_err(), Ok(Right(String::new())));
Source§impl<T, L, R> Either<Result<T, L>, Result<T, R>>
impl<T, L, R> Either<Result<T, L>, Result<T, R>>
Sourcepub fn factor_ok(self) -> Result<T, Either<L, R>> ⓘ
pub fn factor_ok(self) -> Result<T, Either<L, R>> ⓘ
Factors out a homogenous type from an Either
of Result
.
Here, the homogeneous type is the Ok
type of the Result
.
use either::*;
let left: Either<_, Result<u32, String>> = Left(Err(vec![0]));
assert_eq!(left.factor_ok(), Err(Left(vec![0])));
let right: Either<Result<u32, Vec<u8>>, _> = Right(Err(String::new()));
assert_eq!(right.factor_ok(), Err(Right(String::new())));
Source§impl<T, L, R> Either<(T, L), (T, R)>
impl<T, L, R> Either<(T, L), (T, R)>
Sourcepub fn factor_first(self) -> (T, Either<L, R>) ⓘ
pub fn factor_first(self) -> (T, Either<L, R>) ⓘ
Factor out a homogeneous type from an either of pairs.
Here, the homogeneous type is the first element of the pairs.
use either::*;
let left: Either<_, (u32, String)> = Left((123, vec![0]));
assert_eq!(left.factor_first().0, 123);
let right: Either<(u32, Vec<u8>), _> = Right((123, String::new()));
assert_eq!(right.factor_first().0, 123);
Source§impl<T, L, R> Either<(L, T), (R, T)>
impl<T, L, R> Either<(L, T), (R, T)>
Sourcepub fn factor_second(self) -> (Either<L, R>, T) ⓘ
pub fn factor_second(self) -> (Either<L, R>, T) ⓘ
Factor out a homogeneous type from an either of pairs.
Here, the homogeneous type is the second element of the pairs.
use either::*;
let left: Either<_, (String, u32)> = Left((vec![0], 123));
assert_eq!(left.factor_second().1, 123);
let right: Either<(Vec<u8>, u32), _> = Right((String::new(), 123));
assert_eq!(right.factor_second().1, 123);
Source§impl<T> Either<T, T>
impl<T> Either<T, T>
Sourcepub fn into_inner(self) -> T
pub fn into_inner(self) -> T
Extract the value of an either over two equivalent types.
use either::*;
let left: Either<_, u32> = Left(123);
assert_eq!(left.into_inner(), 123);
let right: Either<u32, _> = Right(123);
assert_eq!(right.into_inner(), 123);
Source§impl<L, R> Either<&L, &R>
impl<L, R> Either<&L, &R>
Trait Implementations§
Source§impl<L, R, Target> AsMut<Target> for Either<L, R>
impl<L, R, Target> AsMut<Target> for Either<L, R>
Source§fn as_mut(&mut self) -> &mut Target
fn as_mut(&mut self) -> &mut Target
Source§impl<L, R> BufRead for Either<L, R>
Requires crate feature "use_std"
impl<L, R> BufRead for Either<L, R>
Requires crate feature "use_std"
Source§fn fill_buf(&mut self) -> Result<&[u8], Error> ⓘ
fn fill_buf(&mut self) -> Result<&[u8], Error> ⓘ
Source§fn consume(&mut self, amt: usize)
fn consume(&mut self, amt: usize)
amt
bytes have been consumed from the buffer,
so they should no longer be returned in calls to read
. Read moreSource§fn read_line(&mut self, buf: &mut String) -> Result<usize, Error> ⓘ
fn read_line(&mut self, buf: &mut String) -> Result<usize, Error> ⓘ
0xA
byte) is reached, and append
them to the provided String
buffer. Read moreSource§fn has_data_left(&mut self) -> Result<bool, Error> ⓘ
fn has_data_left(&mut self) -> Result<bool, Error> ⓘ
buf_read_has_data_left
)Read
has any data left to be read. Read more1.83.0 · Source§fn skip_until(&mut self, byte: u8) -> Result<usize, Error> ⓘ
fn skip_until(&mut self, byte: u8) -> Result<usize, Error> ⓘ
byte
or EOF is reached. Read moreSource§impl<L, R> DoubleEndedIterator for Either<L, R>
impl<L, R> DoubleEndedIterator for Either<L, R>
Source§fn next_back(&mut self) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn next_back(&mut self) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
Source§fn nth_back(&mut self, n: usize) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn nth_back(&mut self, n: usize) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
n
th element from the end of the iterator. Read moreSource§fn rfold<Acc, G>(self, init: Acc, f: G) -> Acc
fn rfold<Acc, G>(self, init: Acc, f: G) -> Acc
Source§fn rfind<P>(&mut self, predicate: P) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn rfind<P>(&mut self, predicate: P) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
Source§impl<L, R> Error for Either<L, R>
Either
implements Error
if both L
and R
implement it.
impl<L, R> Error for Either<L, R>
Either
implements Error
if both L
and R
implement it.
Requires crate feature "use_std"
Source§fn source(&self) -> Option<&(dyn Error + 'static)> ⓘ
fn source(&self) -> Option<&(dyn Error + 'static)> ⓘ
Source§fn description(&self) -> &str ⓘ
fn description(&self) -> &str ⓘ
Source§impl<L, R> ExactSizeIterator for Either<L, R>
impl<L, R> ExactSizeIterator for Either<L, R>
Source§impl<L, R, A> Extend<A> for Either<L, R>
impl<L, R, A> Extend<A> for Either<L, R>
Source§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = A>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = A>,
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<A, B> From<Either<A, B>> for EitherOrBoth<A, B>
impl<A, B> From<Either<A, B>> for EitherOrBoth<A, B>
§fn from(either: Either<A, B>) -> EitherOrBoth<A, B>
fn from(either: Either<A, B>) -> EitherOrBoth<A, B>
Source§impl<L, R> From<Result<R, L>> for Either<L, R>
Convert from Result
to Either
with Ok => Right
and Err => Left
.
impl<L, R> From<Result<R, L>> for Either<L, R>
Convert from Result
to Either
with Ok => Right
and Err => Left
.
§impl<L, R, A, B> FromParallelIterator<Either<L, R>> for (A, B)
impl<L, R, A, B> FromParallelIterator<Either<L, R>> for (A, B)
§fn from_par_iter<I>(pi: I) -> (A, B) ⓘwhere
I: IntoParallelIterator<Item = Either<L, R>>,
fn from_par_iter<I>(pi: I) -> (A, B) ⓘwhere
I: IntoParallelIterator<Item = Either<L, R>>,
par_iter
. Read more§impl<L, R> IndexedParallelIterator for Either<L, R>
impl<L, R> IndexedParallelIterator for Either<L, R>
§fn drive<C>(
self,
consumer: C,
) -> <C as Consumer<<Either<L, R> as ParallelIterator>::Item>>::Result
fn drive<C>( self, consumer: C, ) -> <C as Consumer<<Either<L, R> as ParallelIterator>::Item>>::Result
§fn len(&self) -> usize
fn len(&self) -> usize
§fn with_producer<CB>(
self,
callback: CB,
) -> <CB as ProducerCallback<<Either<L, R> as ParallelIterator>::Item>>::Output
fn with_producer<CB>( self, callback: CB, ) -> <CB as ProducerCallback<<Either<L, R> as ParallelIterator>::Item>>::Output
§fn by_exponential_blocks(self) -> ExponentialBlocks<Self>
fn by_exponential_blocks(self) -> ExponentialBlocks<Self>
§fn by_uniform_blocks(self, block_size: usize) -> UniformBlocks<Self>
fn by_uniform_blocks(self, block_size: usize) -> UniformBlocks<Self>
§fn collect_into_vec(self, target: &mut Vec<Self::Item>)
fn collect_into_vec(self, target: &mut Vec<Self::Item>)
§fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>)
fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>)
§fn zip<Z>(self, zip_op: Z) -> Zip<Self, <Z as IntoParallelIterator>::Iter>
fn zip<Z>(self, zip_op: Z) -> Zip<Self, <Z as IntoParallelIterator>::Iter>
(A, B)
, where the items A
are from
this iterator and B
are from the iterator given as argument.
Like the zip
method on ordinary iterators, if the two
iterators are of unequal length, you only get the items they
have in common. Read more§fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, <Z as IntoParallelIterator>::Iter>
fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, <Z as IntoParallelIterator>::Iter>
Zip
, but requires that both iterators have the same length. Read more§fn interleave<I>(
self,
other: I,
) -> Interleave<Self, <I as IntoParallelIterator>::Iter>where
I: IntoParallelIterator<Item = Self::Item>,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator<Item = Self::Item>,
fn interleave<I>(
self,
other: I,
) -> Interleave<Self, <I as IntoParallelIterator>::Iter>where
I: IntoParallelIterator<Item = Self::Item>,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator<Item = Self::Item>,
§fn interleave_shortest<I>(
self,
other: I,
) -> InterleaveShortest<Self, <I as IntoParallelIterator>::Iter>where
I: IntoParallelIterator<Item = Self::Item>,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator<Item = Self::Item>,
fn interleave_shortest<I>(
self,
other: I,
) -> InterleaveShortest<Self, <I as IntoParallelIterator>::Iter>where
I: IntoParallelIterator<Item = Self::Item>,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator<Item = Self::Item>,
§fn chunks(self, chunk_size: usize) -> Chunks<Self>
fn chunks(self, chunk_size: usize) -> Chunks<Self>
§fn fold_chunks<T, ID, F>(
self,
chunk_size: usize,
identity: ID,
fold_op: F,
) -> FoldChunks<Self, ID, F>
fn fold_chunks<T, ID, F>( self, chunk_size: usize, identity: ID, fold_op: F, ) -> FoldChunks<Self, ID, F>
§fn fold_chunks_with<T, F>(
self,
chunk_size: usize,
init: T,
fold_op: F,
) -> FoldChunksWith<Self, T, F>
fn fold_chunks_with<T, F>( self, chunk_size: usize, init: T, fold_op: F, ) -> FoldChunksWith<Self, T, F>
§fn cmp<I>(self, other: I) -> Orderingwhere
I: IntoParallelIterator<Item = Self::Item>,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: Ord,
fn cmp<I>(self, other: I) -> Orderingwhere
I: IntoParallelIterator<Item = Self::Item>,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: Ord,
ParallelIterator
with those of
another. Read more§fn partial_cmp<I>(self, other: I) -> Option<Ordering> ⓘwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
fn partial_cmp<I>(self, other: I) -> Option<Ordering> ⓘwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
ParallelIterator
with those of
another. Read more§fn eq<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialEq<<I as IntoParallelIterator>::Item>,
fn eq<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialEq<<I as IntoParallelIterator>::Item>,
ParallelIterator
are equal to those of another§fn ne<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialEq<<I as IntoParallelIterator>::Item>,
fn ne<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialEq<<I as IntoParallelIterator>::Item>,
ParallelIterator
are unequal to those of another§fn lt<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
fn lt<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
ParallelIterator
are lexicographically less than those of another.§fn le<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
fn le<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
ParallelIterator
are less or equal to those of another.§fn gt<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
fn gt<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
ParallelIterator
are lexicographically greater than those of another.§fn ge<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
fn ge<I>(self, other: I) -> boolwhere
I: IntoParallelIterator,
<I as IntoParallelIterator>::Iter: IndexedParallelIterator,
Self::Item: PartialOrd<<I as IntoParallelIterator>::Item>,
ParallelIterator
are less or equal to those of another.§fn step_by(self, step: usize) -> StepBy<Self>
fn step_by(self, step: usize) -> StepBy<Self>
§fn skip(self, n: usize) -> Skip<Self>
fn skip(self, n: usize) -> Skip<Self>
n
elements. Read more§fn take(self, n: usize) -> Take<Self>
fn take(self, n: usize) -> Take<Self>
n
elements. Read more§fn position_any<P>(self, predicate: P) -> Option<usize> ⓘ
fn position_any<P>(self, predicate: P) -> Option<usize> ⓘ
ParallelIterator::find_any
, the parallel search will not
necessarily find the first match, and once a match is
found we’ll attempt to stop processing any more. Read more§fn position_first<P>(self, predicate: P) -> Option<usize> ⓘ
fn position_first<P>(self, predicate: P) -> Option<usize> ⓘ
§fn position_last<P>(self, predicate: P) -> Option<usize> ⓘ
fn position_last<P>(self, predicate: P) -> Option<usize> ⓘ
§fn positions<P>(self, predicate: P) -> Positions<Self, P>
fn positions<P>(self, predicate: P) -> Positions<Self, P>
§fn rev(self) -> Rev<Self>
fn rev(self) -> Rev<Self>
§fn with_min_len(self, min: usize) -> MinLen<Self>
fn with_min_len(self, min: usize) -> MinLen<Self>
§fn with_max_len(self, max: usize) -> MaxLen<Self>
fn with_max_len(self, max: usize) -> MaxLen<Self>
with_min_len()
.
For example, given min=10 and max=15, a length of 16 will not be
split any further. Read moreSource§impl<L, R> Into<Result<R, L>> for Either<L, R>
Convert from Either
to Result
with Right => Ok
and Left => Err
.
impl<L, R> Into<Result<R, L>> for Either<L, R>
Convert from Either
to Result
with Right => Ok
and Left => Err
.
Source§impl<L, R> Iterator for Either<L, R>
Either<L, R>
is an iterator if both L
and R
are iterators.
impl<L, R> Iterator for Either<L, R>
Either<L, R>
is an iterator if both L
and R
are iterators.
Source§fn next(&mut self) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn next(&mut self) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
Source§fn size_hint(&self) -> (usize, Option<usize>) ⓘ
fn size_hint(&self) -> (usize, Option<usize>) ⓘ
Source§fn fold<Acc, G>(self, init: Acc, f: G) -> Acc
fn fold<Acc, G>(self, init: Acc, f: G) -> Acc
Source§fn count(self) -> usize
fn count(self) -> usize
Source§fn last(self) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn last(self) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
Source§fn nth(&mut self, n: usize) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn nth(&mut self, n: usize) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
n
th element of the iterator. Read moreSource§fn partition<B, F>(self, f: F) -> (B, B) ⓘ
fn partition<B, F>(self, f: F) -> (B, B) ⓘ
Source§fn all<F>(&mut self, f: F) -> bool
fn all<F>(&mut self, f: F) -> bool
Source§fn any<F>(&mut self, f: F) -> bool
fn any<F>(&mut self, f: F) -> bool
Source§fn find<P>(&mut self, predicate: P) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
fn find<P>(&mut self, predicate: P) -> Option<<Either<L, R> as Iterator>::Item> ⓘ
Source§fn find_map<B, F>(&mut self, f: F) -> Option<B> ⓘ
fn find_map<B, F>(&mut self, f: F) -> Option<B> ⓘ
Source§fn position<P>(&mut self, predicate: P) -> Option<usize> ⓘ
fn position<P>(&mut self, predicate: P) -> Option<usize> ⓘ
Source§fn next_chunk<const N: usize>(
&mut self,
) -> Result<[Self::Item; N], IntoIter<Self::Item, N>> ⓘwhere
Self: Sized,
fn next_chunk<const N: usize>(
&mut self,
) -> Result<[Self::Item; N], IntoIter<Self::Item, N>> ⓘwhere
Self: Sized,
iter_next_chunk
)N
values. Read moreSource§fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> ⓘ
fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> ⓘ
iter_advance_by
)n
elements. Read more1.28.0 · Source§fn step_by(self, step: usize) -> StepBy<Self> ⓘwhere
Self: Sized,
fn step_by(self, step: usize) -> StepBy<Self> ⓘwhere
Self: Sized,
1.0.0 · Source§fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter> ⓘ
fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter> ⓘ
1.0.0 · Source§fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter> ⓘwhere
Self: Sized,
U: IntoIterator,
fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter> ⓘwhere
Self: Sized,
U: IntoIterator,
Source§fn intersperse(self, separator: Self::Item) -> Intersperse<Self> ⓘ
fn intersperse(self, separator: Self::Item) -> Intersperse<Self> ⓘ
iter_intersperse
)separator
between adjacent
items of the original iterator. Read moreSource§fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G> ⓘ
fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G> ⓘ
iter_intersperse
)separator
between adjacent items of the original iterator. Read more1.0.0 · Source§fn map<B, F>(self, f: F) -> Map<Self, F> ⓘ
fn map<B, F>(self, f: F) -> Map<Self, F> ⓘ
1.0.0 · Source§fn filter<P>(self, predicate: P) -> Filter<Self, P> ⓘ
fn filter<P>(self, predicate: P) -> Filter<Self, P> ⓘ
1.0.0 · Source§fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> ⓘ
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> ⓘ
1.0.0 · Source§fn enumerate(self) -> Enumerate<Self> ⓘwhere
Self: Sized,
fn enumerate(self) -> Enumerate<Self> ⓘwhere
Self: Sized,
1.0.0 · Source§fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> ⓘ
fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> ⓘ
1.0.0 · Source§fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> ⓘ
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> ⓘ
1.57.0 · Source§fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P> ⓘ
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P> ⓘ
1.0.0 · Source§fn skip(self, n: usize) -> Skip<Self> ⓘwhere
Self: Sized,
fn skip(self, n: usize) -> Skip<Self> ⓘwhere
Self: Sized,
n
elements. Read more1.0.0 · Source§fn take(self, n: usize) -> Take<Self> ⓘwhere
Self: Sized,
fn take(self, n: usize) -> Take<Self> ⓘwhere
Self: Sized,
n
elements, or fewer
if the underlying iterator ends sooner. Read more1.0.0 · Source§fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> ⓘ
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> ⓘ
1.29.0 · Source§fn flatten(self) -> Flatten<Self> ⓘ
fn flatten(self) -> Flatten<Self> ⓘ
Source§fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N> ⓘ
fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N> ⓘ
iter_map_windows
)f
for each contiguous window of size N
over
self
and returns an iterator over the outputs of f
. Like slice::windows()
,
the windows during mapping overlap as well. Read more1.0.0 · Source§fn inspect<F>(self, f: F) -> Inspect<Self, F> ⓘ
fn inspect<F>(self, f: F) -> Inspect<Self, F> ⓘ
1.0.0 · Source§fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
Source§fn try_collect<B>(
&mut self,
) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
fn try_collect<B>( &mut self, ) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
iterator_try_collect
)Source§fn collect_into<E>(self, collection: &mut E) -> &mut E
fn collect_into<E>(self, collection: &mut E) -> &mut E
iter_collect_into
)Source§fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
iter_partition_in_place
)true
precede all those that return false
.
Returns the number of true
elements found. Read moreSource§fn is_partitioned<P>(self, predicate: P) -> bool
fn is_partitioned<P>(self, predicate: P) -> bool
iter_is_partitioned
)true
precede all those that return false
. Read more1.27.0 · Source§fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
1.27.0 · Source§fn try_for_each<F, R>(&mut self, f: F) -> R
fn try_for_each<F, R>(&mut self, f: F) -> R
1.51.0 · Source§fn reduce<F>(self, f: F) -> Option<Self::Item> ⓘ
fn reduce<F>(self, f: F) -> Option<Self::Item> ⓘ
Source§fn try_reduce<R>(
&mut self,
f: impl FnMut(Self::Item, Self::Item) -> R,
) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
fn try_reduce<R>( &mut self, f: impl FnMut(Self::Item, Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
iterator_try_reduce
)Source§fn try_find<R>(
&mut self,
f: impl FnMut(&Self::Item) -> R,
) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
fn try_find<R>( &mut self, f: impl FnMut(&Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
try_find
)1.0.0 · Source§fn rposition<P>(&mut self, predicate: P) -> Option<usize> ⓘ
fn rposition<P>(&mut self, predicate: P) -> Option<usize> ⓘ
1.0.0 · Source§fn max(self) -> Option<Self::Item> ⓘ
fn max(self) -> Option<Self::Item> ⓘ
1.0.0 · Source§fn min(self) -> Option<Self::Item> ⓘ
fn min(self) -> Option<Self::Item> ⓘ
1.6.0 · Source§fn max_by_key<B, F>(self, f: F) -> Option<Self::Item> ⓘ
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item> ⓘ
1.15.0 · Source§fn max_by<F>(self, compare: F) -> Option<Self::Item> ⓘ
fn max_by<F>(self, compare: F) -> Option<Self::Item> ⓘ
1.6.0 · Source§fn min_by_key<B, F>(self, f: F) -> Option<Self::Item> ⓘ
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item> ⓘ
1.15.0 · Source§fn min_by<F>(self, compare: F) -> Option<Self::Item> ⓘ
fn min_by<F>(self, compare: F) -> Option<Self::Item> ⓘ
1.0.0 · Source§fn rev(self) -> Rev<Self> ⓘwhere
Self: Sized + DoubleEndedIterator,
fn rev(self) -> Rev<Self> ⓘwhere
Self: Sized + DoubleEndedIterator,
1.0.0 · Source§fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) ⓘ
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) ⓘ
1.36.0 · Source§fn copied<'a, T>(self) -> Copied<Self> ⓘ
fn copied<'a, T>(self) -> Copied<Self> ⓘ
Source§fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N> ⓘwhere
Self: Sized,
fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N> ⓘwhere
Self: Sized,
iter_array_chunks
)N
elements of the iterator at a time. Read more1.11.0 · Source§fn product<P>(self) -> P
fn product<P>(self) -> P
Source§fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
iter_order_by
)Iterator
with those
of another with respect to the specified comparison function. Read more1.5.0 · Source§fn partial_cmp<I>(self, other: I) -> Option<Ordering> ⓘ
fn partial_cmp<I>(self, other: I) -> Option<Ordering> ⓘ
PartialOrd
elements of
this Iterator
with those of another. The comparison works like short-circuit
evaluation, returning a result without comparing the remaining elements.
As soon as an order can be determined, the evaluation stops and a result is returned. Read moreSource§fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering> ⓘwhere
Self: Sized,
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering> ⓘwhere
Self: Sized,
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
iter_order_by
)Iterator
with those
of another with respect to the specified comparison function. Read moreSource§fn eq_by<I, F>(self, other: I, eq: F) -> bool
fn eq_by<I, F>(self, other: I, eq: F) -> bool
iter_order_by
)1.5.0 · Source§fn lt<I>(self, other: I) -> bool
fn lt<I>(self, other: I) -> bool
Iterator
are lexicographically
less than those of another. Read more1.5.0 · Source§fn le<I>(self, other: I) -> bool
fn le<I>(self, other: I) -> bool
Iterator
are lexicographically
less or equal to those of another. Read more1.5.0 · Source§fn gt<I>(self, other: I) -> bool
fn gt<I>(self, other: I) -> bool
Iterator
are lexicographically
greater than those of another. Read more1.5.0 · Source§fn ge<I>(self, other: I) -> bool
fn ge<I>(self, other: I) -> bool
Iterator
are lexicographically
greater than or equal to those of another. Read more1.82.0 · Source§fn is_sorted(self) -> bool
fn is_sorted(self) -> bool
1.82.0 · Source§fn is_sorted_by<F>(self, compare: F) -> bool
fn is_sorted_by<F>(self, compare: F) -> bool
1.82.0 · Source§fn is_sorted_by_key<F, K>(self, f: F) -> bool
fn is_sorted_by_key<F, K>(self, f: F) -> bool
Source§impl<L, R> Ord for Either<L, R>
impl<L, R> Ord for Either<L, R>
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
§impl<L, R, A, B> ParallelExtend<Either<L, R>> for (A, B)
impl<L, R, A, B> ParallelExtend<Either<L, R>> for (A, B)
§fn par_extend<I>(&mut self, pi: I)where
I: IntoParallelIterator<Item = Either<L, R>>,
fn par_extend<I>(&mut self, pi: I)where
I: IntoParallelIterator<Item = Either<L, R>>,
par_iter
. Read more§impl<L, R, T> ParallelExtend<T> for Either<L, R>
Either<L, R>
can be extended if both L
and R
are parallel extendable.
impl<L, R, T> ParallelExtend<T> for Either<L, R>
Either<L, R>
can be extended if both L
and R
are parallel extendable.
§fn par_extend<I>(&mut self, par_iter: I)where
I: IntoParallelIterator<Item = T>,
fn par_extend<I>(&mut self, par_iter: I)where
I: IntoParallelIterator<Item = T>,
par_iter
. Read more§impl<L, R> ParallelIterator for Either<L, R>
Either<L, R>
is a parallel iterator if both L
and R
are parallel iterators.
impl<L, R> ParallelIterator for Either<L, R>
Either<L, R>
is a parallel iterator if both L
and R
are parallel iterators.
§type Item = <L as ParallelIterator>::Item
type Item = <L as ParallelIterator>::Item
for_each
method, this is the type of
item that your closure will be invoked with.§fn drive_unindexed<C>(
self,
consumer: C,
) -> <C as Consumer<<Either<L, R> as ParallelIterator>::Item>>::Result
fn drive_unindexed<C>( self, consumer: C, ) -> <C as Consumer<<Either<L, R> as ParallelIterator>::Item>>::Result
§fn opt_len(&self) -> Option<usize> ⓘ
fn opt_len(&self) -> Option<usize> ⓘ
§fn for_each<OP>(self, op: OP)
fn for_each<OP>(self, op: OP)
OP
on each item produced by the iterator, in parallel. Read more§fn for_each_with<OP, T>(self, init: T, op: OP)
fn for_each_with<OP, T>(self, init: T, op: OP)
§fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP)
fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP)
OP
on a value returned by init
with each item produced by
the iterator, in parallel. Read more§fn try_for_each<OP, R>(self, op: OP) -> R
fn try_for_each<OP, R>(self, op: OP) -> R
OP
on each item produced by the iterator, in parallel. Read more§fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R
fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R
OP
on the given init
value with each item
produced by the iterator, in parallel. Read more§fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R
fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R
OP
on a value returned by init
with each item
produced by the iterator, in parallel. Read more§fn map<F, R>(self, map_op: F) -> Map<Self, F>
fn map<F, R>(self, map_op: F) -> Map<Self, F>
map_op
to each item of this iterator, producing a new
iterator with the results. Read more§fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F>
fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F>
map_op
to the given init
value with each item of this
iterator, producing a new iterator with the results. Read more§fn map_init<F, INIT, T, R>(
self,
init: INIT,
map_op: F,
) -> MapInit<Self, INIT, F>
fn map_init<F, INIT, T, R>( self, init: INIT, map_op: F, ) -> MapInit<Self, INIT, F>
map_op
to a value returned by init
with each item of this
iterator, producing a new iterator with the results. Read more§fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP>
fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP>
inspect_op
to a reference to each item of this iterator,
producing a new iterator passing through the original items. This is
often useful for debugging to see what’s happening in iterator stages. Read more§fn update<F>(self, update_op: F) -> Update<Self, F>
fn update<F>(self, update_op: F) -> Update<Self, F>
§fn filter<P>(self, filter_op: P) -> Filter<Self, P>
fn filter<P>(self, filter_op: P) -> Filter<Self, P>
filter_op
to each item of this iterator, producing a new
iterator with only the items that gave true
results. Read more§fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P>
fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P>
filter_op
to each item of this iterator to get an Option
,
producing a new iterator with only the items from Some
results. Read more§fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F>
fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F>
map_op
to each item of this iterator to get nested parallel iterators,
producing a new parallel iterator that flattens these back into one. Read more§fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F>
fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F>
map_op
to each item of this iterator to get nested serial iterators,
producing a new parallel iterator that flattens these back into one. Read more§fn flatten(self) -> Flatten<Self>where
Self::Item: IntoParallelIterator,
fn flatten(self) -> Flatten<Self>where
Self::Item: IntoParallelIterator,
Item
s into one large iterator. Read more§fn flatten_iter(self) -> FlattenIter<Self>
fn flatten_iter(self) -> FlattenIter<Self>
Item
s into one large iterator. Read more§fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item
fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item
op
.
The argument identity
should be a closure that can produce
“identity” value which may be inserted into the sequence as
needed to create opportunities for parallel execution. So, for
example, if you are doing a summation, then identity()
ought
to produce something that represents the zero for your type
(but consider just calling sum()
in that case). Read more§fn reduce_with<OP>(self, op: OP) -> Option<Self::Item> ⓘ
fn reduce_with<OP>(self, op: OP) -> Option<Self::Item> ⓘ
op
.
If the iterator is empty, None
is returned; otherwise,
Some
is returned. Read more§fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item
fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item
§fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item> ⓘ
fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item> ⓘ
op
. Read more§fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F>
fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F>
22 3 77 89 46
. If
you used sequential fold to add them (fold(0, |a,b| a+b)
,
you would wind up first adding 0 + 22, then 22 + 3, then 25 +
77, and so forth. The parallel fold works similarly except
that it first breaks up your list into sublists, and hence
instead of yielding up a single sum at the end, it yields up
multiple sums. The number of results is nondeterministic, as
is the point where the breaks occur. Read more§fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F>
fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F>
fold_op
to the given init
value with each item of this
iterator, finally producing the value for further use. Read more§fn try_fold<T, R, ID, F>(
self,
identity: ID,
fold_op: F,
) -> TryFold<Self, R, ID, F>
fn try_fold<T, R, ID, F>( self, identity: ID, fold_op: F, ) -> TryFold<Self, R, ID, F>
§fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F>
fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F>
init
value. Read more§fn min(self) -> Option<Self::Item> ⓘ
fn min(self) -> Option<Self::Item> ⓘ
None
is returned; otherwise, Some(min)
is returned. Read more§fn min_by<F>(self, f: F) -> Option<Self::Item> ⓘ
fn min_by<F>(self, f: F) -> Option<Self::Item> ⓘ
None
is
returned; otherwise, Some(min)
is returned. Read more§fn min_by_key<K, F>(self, f: F) -> Option<Self::Item> ⓘ
fn min_by_key<K, F>(self, f: F) -> Option<Self::Item> ⓘ
None
is returned;
otherwise, Some(item)
is returned. Read more§fn max(self) -> Option<Self::Item> ⓘ
fn max(self) -> Option<Self::Item> ⓘ
None
is returned; otherwise, Some(max)
is returned. Read more§fn max_by<F>(self, f: F) -> Option<Self::Item> ⓘ
fn max_by<F>(self, f: F) -> Option<Self::Item> ⓘ
None
is
returned; otherwise, Some(max)
is returned. Read more§fn max_by_key<K, F>(self, f: F) -> Option<Self::Item> ⓘ
fn max_by_key<K, F>(self, f: F) -> Option<Self::Item> ⓘ
None
is returned;
otherwise, Some(item)
is returned. Read more§fn chain<C>(self, chain: C) -> Chain<Self, <C as IntoParallelIterator>::Iter>where
C: IntoParallelIterator<Item = Self::Item>,
fn chain<C>(self, chain: C) -> Chain<Self, <C as IntoParallelIterator>::Iter>where
C: IntoParallelIterator<Item = Self::Item>,
§fn find_any<P>(self, predicate: P) -> Option<Self::Item> ⓘ
fn find_any<P>(self, predicate: P) -> Option<Self::Item> ⓘ
find
on sequential iterators but
the item returned may not be the first one in the parallel
sequence which matches, since we search the entire sequence in parallel. Read more§fn find_first<P>(self, predicate: P) -> Option<Self::Item> ⓘ
fn find_first<P>(self, predicate: P) -> Option<Self::Item> ⓘ
§fn find_last<P>(self, predicate: P) -> Option<Self::Item> ⓘ
fn find_last<P>(self, predicate: P) -> Option<Self::Item> ⓘ
§fn find_map_any<P, R>(self, predicate: P) -> Option<R> ⓘ
fn find_map_any<P, R>(self, predicate: P) -> Option<R> ⓘ
§fn find_map_first<P, R>(self, predicate: P) -> Option<R> ⓘ
fn find_map_first<P, R>(self, predicate: P) -> Option<R> ⓘ
§fn find_map_last<P, R>(self, predicate: P) -> Option<R> ⓘ
fn find_map_last<P, R>(self, predicate: P) -> Option<R> ⓘ
§fn any<P>(self, predicate: P) -> bool
fn any<P>(self, predicate: P) -> bool
§fn all<P>(self, predicate: P) -> bool
fn all<P>(self, predicate: P) -> bool
§fn while_some<T>(self) -> WhileSome<Self>
fn while_some<T>(self) -> WhileSome<Self>
Some
items of this iterator, halting
as soon as any None
is found. Read more§fn panic_fuse(self) -> PanicFuse<Self>
fn panic_fuse(self) -> PanicFuse<Self>
§fn collect<C>(self) -> Cwhere
C: FromParallelIterator<Self::Item>,
fn collect<C>(self) -> Cwhere
C: FromParallelIterator<Self::Item>,
§fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) ⓘwhere
Self: ParallelIterator<Item = (A, B)>,
FromA: Default + Send + ParallelExtend<A>,
FromB: Default + Send + ParallelExtend<B>,
A: Send,
B: Send,
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) ⓘwhere
Self: ParallelIterator<Item = (A, B)>,
FromA: Default + Send + ParallelExtend<A>,
FromB: Default + Send + ParallelExtend<B>,
A: Send,
B: Send,
ParallelExtend
containers. Read more§fn partition<A, B, P>(self, predicate: P) -> (A, B) ⓘ
fn partition<A, B, P>(self, predicate: P) -> (A, B) ⓘ
ParallelExtend
containers. Items for which the predicate
returns
true go into the first container, and the rest go into the second. Read more§fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B) ⓘ
fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B) ⓘ
ParallelExtend
containers. Either::Left
items go into
the first container, and Either::Right
items go into the second. Read more§fn intersperse(self, element: Self::Item) -> Intersperse<Self>
fn intersperse(self, element: Self::Item) -> Intersperse<Self>
§fn take_any(self, n: usize) -> TakeAny<Self>
fn take_any(self, n: usize) -> TakeAny<Self>
n
elements from anywhere in the original iterator. Read more§fn skip_any(self, n: usize) -> SkipAny<Self>
fn skip_any(self, n: usize) -> SkipAny<Self>
n
elements from anywhere in the original iterator. Read more§fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P>
fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P>
predicate
returns false
. Read more§fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P>
fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P>
predicate
returns false
. Read more§fn collect_vec_list(self) -> LinkedList<Vec<Self::Item>>
fn collect_vec_list(self) -> LinkedList<Vec<Self::Item>>
Source§impl<L, R> PartialOrd for Either<L, R>where
L: PartialOrd,
R: PartialOrd,
impl<L, R> PartialOrd for Either<L, R>where
L: PartialOrd,
R: PartialOrd,
Source§impl<L, R> Read for Either<L, R>
Either<L, R>
implements Read
if both L
and R
do.
impl<L, R> Read for Either<L, R>
Either<L, R>
implements Read
if both L
and R
do.
Requires crate feature "use_std"
Source§fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> ⓘ
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> ⓘ
Source§fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error> ⓘ
fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error> ⓘ
buf
. Read moreSource§fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error> ⓘ
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error> ⓘ
buf
. Read moreSource§fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error> ⓘ
fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error> ⓘ
buf
. Read more1.36.0 · Source§fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize, Error> ⓘ
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize, Error> ⓘ
read
, except that it reads into a slice of buffers. Read moreSource§fn is_read_vectored(&self) -> bool
fn is_read_vectored(&self) -> bool
can_vector
)Source§fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<(), Error> ⓘ
fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<(), Error> ⓘ
read_buf
)Source§fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error> ⓘ
fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error> ⓘ
read_buf
)cursor
. Read more1.0.0 · Source§fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
fn by_ref(&mut self) -> &mut Selfwhere
Self: Sized,
Read
. Read moreSource§impl<L, R> Seek for Either<L, R>
Either<L, R>
implements Seek
if both L
and R
do.
impl<L, R> Seek for Either<L, R>
Either<L, R>
implements Seek
if both L
and R
do.
Requires crate feature "use_std"
Source§fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error> ⓘ
fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error> ⓘ
1.55.0 · Source§fn rewind(&mut self) -> Result<(), Error> ⓘ
fn rewind(&mut self) -> Result<(), Error> ⓘ
Source§fn stream_len(&mut self) -> Result<u64, Error> ⓘ
fn stream_len(&mut self) -> Result<u64, Error> ⓘ
seek_stream_len
)Source§impl<L, R> Write for Either<L, R>
Either<L, R>
implements Write
if both L
and R
do.
impl<L, R> Write for Either<L, R>
Either<L, R>
implements Write
if both L
and R
do.
Requires crate feature "use_std"
Source§fn write(&mut self, buf: &[u8]) -> Result<usize, Error> ⓘ
fn write(&mut self, buf: &[u8]) -> Result<usize, Error> ⓘ
Source§fn write_all(&mut self, buf: &[u8]) -> Result<(), Error> ⓘ
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error> ⓘ
Source§fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result<(), Error> ⓘ
fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result<(), Error> ⓘ
Source§fn flush(&mut self) -> Result<(), Error> ⓘ
fn flush(&mut self) -> Result<(), Error> ⓘ
Source§fn is_write_vectored(&self) -> bool
fn is_write_vectored(&self) -> bool
can_vector
)impl<L, R> Copy for Either<L, R>
impl<L, R> Eq for Either<L, R>
impl<L, R> FusedIterator for Either<L, R>
impl<L, R> StructuralPartialEq for Either<L, R>
Auto Trait Implementations§
impl<L, R> Freeze for Either<L, R>
impl<L, R> RefUnwindSafe for Either<L, R>where
L: RefUnwindSafe,
R: RefUnwindSafe,
impl<L, R> Send for Either<L, R>
impl<L, R> Sync for Either<L, R>
impl<L, R> Unpin for Either<L, R>
impl<L, R> UnwindSafe for Either<L, R>where
L: UnwindSafe,
R: UnwindSafe,
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize
fn byte_align(&self) -> usize
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<I> CollectIn for Iwhere
I: Iterator,
impl<I> CollectIn for Iwhere
I: Iterator,
§fn collect_in<C>(self, alloc: <C as FromIteratorIn<Self::Item>>::Alloc) -> Cwhere
C: FromIteratorIn<Self::Item>,
fn collect_in<C>(self, alloc: <C as FromIteratorIn<Self::Item>>::Alloc) -> Cwhere
C: FromIteratorIn<Self::Item>,
Iterator::collect
. Read more§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<T> ExecutableCommand for T
impl<T> ExecutableCommand for T
§fn execute(&mut self, command: impl Command) -> Result<&mut T, Error> ⓘ
fn execute(&mut self, command: impl Command) -> Result<&mut T, Error> ⓘ
Executes the given command directly.
The given command its ANSI escape code will be written and flushed onto Self
.
§Arguments
-
The command that you want to execute directly.
§Example
use std::io;
use crossterm::{ExecutableCommand, style::Print};
fn main() -> io::Result<()> {
// will be executed directly
io::stdout()
.execute(Print("sum:\n".to_string()))?
.execute(Print(format!("1 + 1= {} ", 1 + 1)))?;
Ok(())
// ==== Output ====
// sum:
// 1 + 1 = 2
}
Have a look over at the Command API for more details.
§Notes
- In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
- In case of Windows versions lower than 10, a direct WinAPI call will be made.
The reason for this is that Windows versions lower than 10 do not support ANSI codes,
and can therefore not be written to the given
writer
. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of<T>() -> usize
fn mem_align_of<T>() -> usize
Source§fn mem_align_of_val(&self) -> usize
fn mem_align_of_val(&self) -> usize
Source§fn mem_size_of<T>() -> usize
fn mem_size_of<T>() -> usize
Source§fn mem_size_of_val(&self) -> usize
fn mem_size_of_val(&self) -> usize
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<F> IntoFuture for Fwhere
F: Future,
impl<F> IntoFuture for Fwhere
F: Future,
Source§type IntoFuture = F
type IntoFuture = F
Source§fn into_future(self) -> <F as IntoFuture>::IntoFuture
fn into_future(self) -> <F as IntoFuture>::IntoFuture
Source§impl<I> IntoIterator for Iwhere
I: Iterator,
impl<I> IntoIterator for Iwhere
I: Iterator,
§impl<T> IntoParallelIterator for Twhere
T: ParallelIterator,
impl<T> IntoParallelIterator for Twhere
T: ParallelIterator,
§type Item = <T as ParallelIterator>::Item
type Item = <T as ParallelIterator>::Item
§fn into_par_iter(self) -> T
fn into_par_iter(self) -> T
self
into a parallel iterator. Read more§impl<'py, T, I> IntoPyDict<'py> for Iwhere
T: PyDictItem<'py>,
I: IntoIterator<Item = T>,
impl<'py, T, I> IntoPyDict<'py> for Iwhere
T: PyDictItem<'py>,
I: IntoIterator<Item = T>,
§fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr> ⓘ
fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr> ⓘ
PyDict
object pointer. Whether pointer owned or borrowed
depends on implementation.§fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>
fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>
IntoPyDict::into_py_dict
IntoPyDict::into_py_dict
.§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> Itertools for T
impl<T> Itertools for T
§fn interleave<J>(
self,
other: J,
) -> Interleave<Self, <J as IntoIterator>::IntoIter> ⓘ
fn interleave<J>( self, other: J, ) -> Interleave<Self, <J as IntoIterator>::IntoIter> ⓘ
§fn interleave_shortest<J>(
self,
other: J,
) -> InterleaveShortest<Self, <J as IntoIterator>::IntoIter> ⓘ
fn interleave_shortest<J>( self, other: J, ) -> InterleaveShortest<Self, <J as IntoIterator>::IntoIter> ⓘ
§fn intersperse(
self,
element: Self::Item,
) -> IntersperseWith<Self, IntersperseElementSimple<Self::Item>> ⓘ
fn intersperse( self, element: Self::Item, ) -> IntersperseWith<Self, IntersperseElementSimple<Self::Item>> ⓘ
§fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> ⓘ
fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> ⓘ
§fn get<R>(self, index: R) -> <R as IteratorIndex<Self>>::Outputwhere
Self: Sized,
R: IteratorIndex<Self>,
fn get<R>(self, index: R) -> <R as IteratorIndex<Self>>::Outputwhere
Self: Sized,
R: IteratorIndex<Self>,
§fn zip_longest<J>(
self,
other: J,
) -> ZipLongest<Self, <J as IntoIterator>::IntoIter> ⓘwhere
J: IntoIterator,
Self: Sized,
fn zip_longest<J>(
self,
other: J,
) -> ZipLongest<Self, <J as IntoIterator>::IntoIter> ⓘwhere
J: IntoIterator,
Self: Sized,
§fn zip_eq<J>(self, other: J) -> ZipEq<Self, <J as IntoIterator>::IntoIter> ⓘwhere
J: IntoIterator,
Self: Sized,
fn zip_eq<J>(self, other: J) -> ZipEq<Self, <J as IntoIterator>::IntoIter> ⓘwhere
J: IntoIterator,
Self: Sized,
§fn batching<B, F>(self, f: F) -> Batching<Self, F> ⓘ
fn batching<B, F>(self, f: F) -> Batching<Self, F> ⓘ
§fn chunk_by<K, F>(self, key: F) -> ChunkBy<K, Self, F>
fn chunk_by<K, F>(self, key: F) -> ChunkBy<K, Self, F>
§fn group_by<K, F>(self, key: F) -> ChunkBy<K, Self, F>
fn group_by<K, F>(self, key: F) -> ChunkBy<K, Self, F>
.chunk_by()
.§fn chunks(self, size: usize) -> IntoChunks<Self>where
Self: Sized,
fn chunks(self, size: usize) -> IntoChunks<Self>where
Self: Sized,
§fn tuple_windows<T>(self) -> TupleWindows<Self, T> ⓘwhere
Self: Sized + Iterator<Item = <T as TupleCollect>::Item>,
T: HomogeneousTuple,
<T as TupleCollect>::Item: Clone,
fn tuple_windows<T>(self) -> TupleWindows<Self, T> ⓘwhere
Self: Sized + Iterator<Item = <T as TupleCollect>::Item>,
T: HomogeneousTuple,
<T as TupleCollect>::Item: Clone,
§fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> ⓘ
fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> ⓘ
§fn tuples<T>(self) -> Tuples<Self, T> ⓘ
fn tuples<T>(self) -> Tuples<Self, T> ⓘ
§fn tee(self) -> (Tee<Self>, Tee<Self>) ⓘ
fn tee(self) -> (Tee<Self>, Tee<Self>) ⓘ
§fn map_ok<F, T, U, E>(self, f: F) -> MapSpecialCase<Self, MapSpecialCaseFnOk<F>>
fn map_ok<F, T, U, E>(self, f: F) -> MapSpecialCase<Self, MapSpecialCaseFnOk<F>>
Result::Ok
value. Result::Err
values are
unchanged. Read more§fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> ⓘ
fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> ⓘ
Result::Ok
value with the provided closure. Result::Err
values are
unchanged. Read more§fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> ⓘ
fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> ⓘ
Result::Ok
value with the provided closure. Result::Err
values are unchanged. Read more§fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> ⓘ
fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> ⓘ
Result::Ok
value into
a series of Result::Ok
values. Result::Err
values are unchanged. Read more§fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E> ⓘ
fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E> ⓘ
Result
values instead. Read more§fn merge<J>(
self,
other: J,
) -> MergeBy<Self, <J as IntoIterator>::IntoIter, MergeLte> ⓘ
fn merge<J>( self, other: J, ) -> MergeBy<Self, <J as IntoIterator>::IntoIter, MergeLte> ⓘ
§fn merge_by<J, F>(
self,
other: J,
is_first: F,
) -> MergeBy<Self, <J as IntoIterator>::IntoIter, F> ⓘ
fn merge_by<J, F>( self, other: J, is_first: F, ) -> MergeBy<Self, <J as IntoIterator>::IntoIter, F> ⓘ
§fn merge_join_by<J, F, T>(
self,
other: J,
cmp_fn: F,
) -> MergeBy<Self, <J as IntoIterator>::IntoIter, MergeFuncLR<F, <F as FuncLR<Self::Item, <<J as IntoIterator>::IntoIter as Iterator>::Item>>::T>> ⓘ
fn merge_join_by<J, F, T>( self, other: J, cmp_fn: F, ) -> MergeBy<Self, <J as IntoIterator>::IntoIter, MergeFuncLR<F, <F as FuncLR<Self::Item, <<J as IntoIterator>::IntoIter as Iterator>::Item>>::T>> ⓘ
§fn kmerge(self) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, KMergeByLt> ⓘ
fn kmerge(self) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, KMergeByLt> ⓘ
§fn kmerge_by<F>(
self,
first: F,
) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> ⓘwhere
Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool,
fn kmerge_by<F>(
self,
first: F,
) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> ⓘwhere
Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool,
§fn cartesian_product<J>(
self,
other: J,
) -> Product<Self, <J as IntoIterator>::IntoIter> ⓘ
fn cartesian_product<J>( self, other: J, ) -> Product<Self, <J as IntoIterator>::IntoIter> ⓘ
self
and J
. Read more§fn multi_cartesian_product(
self,
) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> ⓘwhere
Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::IntoIter: Clone,
<Self::Item as IntoIterator>::Item: Clone,
fn multi_cartesian_product(
self,
) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> ⓘwhere
Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::IntoIter: Clone,
<Self::Item as IntoIterator>::Item: Clone,
self
. Read more§fn coalesce<F>(self, f: F) -> CoalesceBy<Self, F, NoCount>
fn coalesce<F>(self, f: F) -> CoalesceBy<Self, F, NoCount>
§fn dedup(self) -> CoalesceBy<Self, DedupPred2CoalescePred<DedupEq>, NoCount>
fn dedup(self) -> CoalesceBy<Self, DedupPred2CoalescePred<DedupEq>, NoCount>
§fn dedup_by<Cmp>(
self,
cmp: Cmp,
) -> CoalesceBy<Self, DedupPred2CoalescePred<Cmp>, NoCount>
fn dedup_by<Cmp>( self, cmp: Cmp, ) -> CoalesceBy<Self, DedupPred2CoalescePred<Cmp>, NoCount>
§fn dedup_with_count(
self,
) -> CoalesceBy<Self, DedupPredWithCount2CoalescePred<DedupEq>, WithCount>where
Self: Sized,
fn dedup_with_count(
self,
) -> CoalesceBy<Self, DedupPredWithCount2CoalescePred<DedupEq>, WithCount>where
Self: Sized,
§fn dedup_by_with_count<Cmp>(
self,
cmp: Cmp,
) -> CoalesceBy<Self, DedupPredWithCount2CoalescePred<Cmp>, WithCount>
fn dedup_by_with_count<Cmp>( self, cmp: Cmp, ) -> CoalesceBy<Self, DedupPredWithCount2CoalescePred<Cmp>, WithCount>
§fn duplicates(self) -> DuplicatesBy<Self, Self::Item, ById>
fn duplicates(self) -> DuplicatesBy<Self, Self::Item, ById>
§fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, ByFn<F>>
fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, ByFn<F>>
§fn unique(self) -> Unique<Self> ⓘ
fn unique(self) -> Unique<Self> ⓘ
§fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> ⓘ
fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> ⓘ
§fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<'_, Self, F> ⓘ
fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<'_, Self, F> ⓘ
accept
returns true
. Read more§fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<'_, Self, F> ⓘ
fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<'_, Self, F> ⓘ
Clone
-able iterator
to only pick off elements while the predicate accept
returns true
. Read more§fn take_while_inclusive<F>(self, accept: F) -> TakeWhileInclusive<Self, F> ⓘ
fn take_while_inclusive<F>(self, accept: F) -> TakeWhileInclusive<Self, F> ⓘ
true
, including the element for which the predicate
first returned false
. Read more§fn while_some<A>(self) -> WhileSome<Self> ⓘ
fn while_some<A>(self) -> WhileSome<Self> ⓘ
Option<A>
iterator elements
and produces A
. Stops on the first None
encountered. Read more§fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> ⓘ
fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> ⓘ
§fn array_combinations<const K: usize>(
self,
) -> CombinationsGeneric<Self, [usize; K]>
fn array_combinations<const K: usize>( self, ) -> CombinationsGeneric<Self, [usize; K]>
§fn combinations(self, k: usize) -> CombinationsGeneric<Self, Vec<usize>>
fn combinations(self, k: usize) -> CombinationsGeneric<Self, Vec<usize>>
k
-length combinations of
the elements from an iterator. Read more§fn combinations_with_replacement(
self,
k: usize,
) -> CombinationsWithReplacement<Self> ⓘ
fn combinations_with_replacement( self, k: usize, ) -> CombinationsWithReplacement<Self> ⓘ
k
-length combinations of
the elements from an iterator, with replacement. Read more§fn permutations(self, k: usize) -> Permutations<Self> ⓘ
fn permutations(self, k: usize) -> Permutations<Self> ⓘ
§fn powerset(self) -> Powerset<Self> ⓘ
fn powerset(self) -> Powerset<Self> ⓘ
§fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> ⓘ
fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> ⓘ
min
by filling missing elements using a closure f
. Read more§fn with_position(self) -> WithPosition<Self> ⓘwhere
Self: Sized,
fn with_position(self) -> WithPosition<Self> ⓘwhere
Self: Sized,
Position
to
ease special-case handling of the first or last elements. Read more§fn positions<P>(self, predicate: P) -> Positions<Self, P> ⓘ
fn positions<P>(self, predicate: P) -> Positions<Self, P> ⓘ
§fn update<F>(self, updater: F) -> Update<Self, F> ⓘ
fn update<F>(self, updater: F) -> Update<Self, F> ⓘ
§fn next_array<const N: usize>(&mut self) -> Option<[Self::Item; N]> ⓘwhere
Self: Sized,
fn next_array<const N: usize>(&mut self) -> Option<[Self::Item; N]> ⓘwhere
Self: Sized,
§fn collect_array<const N: usize>(self) -> Option<[Self::Item; N]> ⓘwhere
Self: Sized,
fn collect_array<const N: usize>(self) -> Option<[Self::Item; N]> ⓘwhere
Self: Sized,
§fn next_tuple<T>(&mut self) -> Option<T> ⓘ
fn next_tuple<T>(&mut self) -> Option<T> ⓘ
§fn collect_tuple<T>(self) -> Option<T> ⓘ
fn collect_tuple<T>(self) -> Option<T> ⓘ
§fn find_position<P>(&mut self, pred: P) -> Option<(usize, Self::Item)> ⓘ
fn find_position<P>(&mut self, pred: P) -> Option<(usize, Self::Item)> ⓘ
§fn find_or_last<P>(self, predicate: P) -> Option<Self::Item> ⓘ
fn find_or_last<P>(self, predicate: P) -> Option<Self::Item> ⓘ
§fn find_or_first<P>(self, predicate: P) -> Option<Self::Item> ⓘ
fn find_or_first<P>(self, predicate: P) -> Option<Self::Item> ⓘ
§fn contains<Q>(&mut self, query: &Q) -> bool
fn contains<Q>(&mut self, query: &Q) -> bool
true
if the given item is present in this iterator. Read more§fn all_equal_value(
&mut self,
) -> Result<Self::Item, Option<(Self::Item, Self::Item)>> ⓘ
fn all_equal_value( &mut self, ) -> Result<Self::Item, Option<(Self::Item, Self::Item)>> ⓘ
§fn all_unique(&mut self) -> bool
fn all_unique(&mut self) -> bool
§fn dropping(self, n: usize) -> Selfwhere
Self: Sized,
fn dropping(self, n: usize) -> Selfwhere
Self: Sized,
n
elements from the iterator eagerly,
and return the same iterator again. Read more§fn dropping_back(self, n: usize) -> Selfwhere
Self: Sized + DoubleEndedIterator,
fn dropping_back(self, n: usize) -> Selfwhere
Self: Sized + DoubleEndedIterator,
n
elements from the iterator eagerly,
and return the same iterator again. Read more§fn collect_vec(self) -> Vec<Self::Item> ⓘwhere
Self: Sized,
fn collect_vec(self) -> Vec<Self::Item> ⓘwhere
Self: Sized,
.collect_vec()
is simply a type specialization of Iterator::collect
,
for convenience.§fn try_collect<T, U, E>(self) -> Result<U, E> ⓘ
fn try_collect<T, U, E>(self) -> Result<U, E> ⓘ
§fn set_from<'a, A, J>(&mut self, from: J) -> usize
fn set_from<'a, A, J>(&mut self, from: J) -> usize
self
from the from
iterator,
stopping at the shortest of the two iterators. Read more§fn format(self, sep: &str) -> Format<'_, Self>where
Self: Sized,
fn format(self, sep: &str) -> Format<'_, Self>where
Self: Sized,
sep
. Read more§fn format_with<F>(self, sep: &str, format: F) -> FormatWith<'_, Self, F>
fn format_with<F>(self, sep: &str, format: F) -> FormatWith<'_, Self, F>
sep
. Read more§fn fold_ok<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> ⓘ
fn fold_ok<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E> ⓘ
Result
values from an iterator. Read more§fn fold_options<A, B, F>(&mut self, start: B, f: F) -> Option<B> ⓘ
fn fold_options<A, B, F>(&mut self, start: B, f: F) -> Option<B> ⓘ
Option
values from an iterator. Read more§fn fold1<F>(self, f: F) -> Option<Self::Item> ⓘ
fn fold1<F>(self, f: F) -> Option<Self::Item> ⓘ
Iterator::reduce
instead§fn tree_reduce<F>(self, f: F) -> Option<Self::Item> ⓘ
fn tree_reduce<F>(self, f: F) -> Option<Self::Item> ⓘ
§fn tree_fold1<F>(self, f: F) -> Option<Self::Item> ⓘ
fn tree_fold1<F>(self, f: F) -> Option<Self::Item> ⓘ
.tree_reduce()
.§fn fold_while<B, F>(&mut self, init: B, f: F) -> FoldWhile<B>
fn fold_while<B, F>(&mut self, init: B, f: F) -> FoldWhile<B>
§fn sum1<S>(self) -> Option<S> ⓘ
fn sum1<S>(self) -> Option<S> ⓘ
§fn product1<P>(self) -> Option<P> ⓘ
fn product1<P>(self) -> Option<P> ⓘ
§fn sorted_unstable(self) -> IntoIter<Self::Item> ⓘ
fn sorted_unstable(self) -> IntoIter<Self::Item> ⓘ
§fn sorted_unstable_by<F>(self, cmp: F) -> IntoIter<Self::Item> ⓘ
fn sorted_unstable_by<F>(self, cmp: F) -> IntoIter<Self::Item> ⓘ
§fn sorted_unstable_by_key<K, F>(self, f: F) -> IntoIter<Self::Item> ⓘ
fn sorted_unstable_by_key<K, F>(self, f: F) -> IntoIter<Self::Item> ⓘ
§fn sorted(self) -> IntoIter<Self::Item> ⓘ
fn sorted(self) -> IntoIter<Self::Item> ⓘ
§fn sorted_by<F>(self, cmp: F) -> IntoIter<Self::Item> ⓘ
fn sorted_by<F>(self, cmp: F) -> IntoIter<Self::Item> ⓘ
§fn sorted_by_key<K, F>(self, f: F) -> IntoIter<Self::Item> ⓘ
fn sorted_by_key<K, F>(self, f: F) -> IntoIter<Self::Item> ⓘ
§fn sorted_by_cached_key<K, F>(self, f: F) -> IntoIter<Self::Item> ⓘ
fn sorted_by_cached_key<K, F>(self, f: F) -> IntoIter<Self::Item> ⓘ
§fn k_smallest(self, k: usize) -> IntoIter<Self::Item> ⓘ
fn k_smallest(self, k: usize) -> IntoIter<Self::Item> ⓘ
§fn k_smallest_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
fn k_smallest_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
§fn k_smallest_by_key<F, K>(self, k: usize, key: F) -> IntoIter<Self::Item> ⓘ
fn k_smallest_by_key<F, K>(self, k: usize, key: F) -> IntoIter<Self::Item> ⓘ
§fn k_smallest_relaxed(self, k: usize) -> IntoIter<Self::Item> ⓘ
fn k_smallest_relaxed(self, k: usize) -> IntoIter<Self::Item> ⓘ
§fn k_smallest_relaxed_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
fn k_smallest_relaxed_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
§fn k_smallest_relaxed_by_key<F, K>(
self,
k: usize,
key: F,
) -> IntoIter<Self::Item> ⓘ
fn k_smallest_relaxed_by_key<F, K>( self, k: usize, key: F, ) -> IntoIter<Self::Item> ⓘ
§fn k_largest(self, k: usize) -> IntoIter<Self::Item> ⓘ
fn k_largest(self, k: usize) -> IntoIter<Self::Item> ⓘ
§fn k_largest_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
fn k_largest_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
§fn k_largest_by_key<F, K>(self, k: usize, key: F) -> IntoIter<Self::Item> ⓘ
fn k_largest_by_key<F, K>(self, k: usize, key: F) -> IntoIter<Self::Item> ⓘ
§fn k_largest_relaxed(self, k: usize) -> IntoIter<Self::Item> ⓘ
fn k_largest_relaxed(self, k: usize) -> IntoIter<Self::Item> ⓘ
§fn k_largest_relaxed_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
fn k_largest_relaxed_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item> ⓘ
§fn k_largest_relaxed_by_key<F, K>(
self,
k: usize,
key: F,
) -> IntoIter<Self::Item> ⓘ
fn k_largest_relaxed_by_key<F, K>( self, k: usize, key: F, ) -> IntoIter<Self::Item> ⓘ
§fn tail(self, n: usize) -> IntoIter<Self::Item> ⓘwhere
Self: Sized,
fn tail(self, n: usize) -> IntoIter<Self::Item> ⓘwhere
Self: Sized,
n
elements. Read more§fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B) ⓘ
fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B) ⓘ
Iterator::partition
, each partition may
have a distinct type. Read more§fn partition_result<A, B, T, E>(self) -> (A, B) ⓘ
fn partition_result<A, B, T, E>(self) -> (A, B) ⓘ
Result
s into one list of all the Ok
elements
and another list of all the Err
elements. Read more§fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
HashMap
of keys mapped to Vec
s of values. Keys and values
are taken from (Key, Value)
tuple pairs yielded by the input iterator. Read more§fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>>
fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>>
HashMap
of keys mapped to Vec
s of values. The key is specified
in the closure. The values are taken from the input iterator. Read more§fn into_grouping_map<K, V>(self) -> GroupingMap<Self>
fn into_grouping_map<K, V>(self) -> GroupingMap<Self>
GroupingMap
to be used later with one of the efficient
group-and-fold operations it allows to perform. Read more§fn into_grouping_map_by<K, V, F>(
self,
key_mapper: F,
) -> GroupingMap<MapSpecialCase<Self, GroupingMapFn<F>>>
fn into_grouping_map_by<K, V, F>( self, key_mapper: F, ) -> GroupingMap<MapSpecialCase<Self, GroupingMapFn<F>>>
GroupingMap
to be used later with one of the efficient
group-and-fold operations it allows to perform. Read more§fn min_set_by<F>(self, compare: F) -> Vec<Self::Item> ⓘ
fn min_set_by<F>(self, compare: F) -> Vec<Self::Item> ⓘ
§fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> ⓘ
fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> ⓘ
§fn max_set_by<F>(self, compare: F) -> Vec<Self::Item> ⓘ
fn max_set_by<F>(self, compare: F) -> Vec<Self::Item> ⓘ
§fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> ⓘ
fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> ⓘ
§fn minmax(self) -> MinMaxResult<Self::Item>
fn minmax(self) -> MinMaxResult<Self::Item>
§fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
§fn minmax_by<F>(self, compare: F) -> MinMaxResult<Self::Item>
fn minmax_by<F>(self, compare: F) -> MinMaxResult<Self::Item>
§fn position_max(self) -> Option<usize> ⓘ
fn position_max(self) -> Option<usize> ⓘ
§fn position_max_by_key<K, F>(self, key: F) -> Option<usize> ⓘ
fn position_max_by_key<K, F>(self, key: F) -> Option<usize> ⓘ
§fn position_max_by<F>(self, compare: F) -> Option<usize> ⓘ
fn position_max_by<F>(self, compare: F) -> Option<usize> ⓘ
§fn position_min(self) -> Option<usize> ⓘ
fn position_min(self) -> Option<usize> ⓘ
§fn position_min_by_key<K, F>(self, key: F) -> Option<usize> ⓘ
fn position_min_by_key<K, F>(self, key: F) -> Option<usize> ⓘ
§fn position_min_by<F>(self, compare: F) -> Option<usize> ⓘ
fn position_min_by<F>(self, compare: F) -> Option<usize> ⓘ
§fn position_minmax(self) -> MinMaxResult<usize>
fn position_minmax(self) -> MinMaxResult<usize>
§fn position_minmax_by_key<K, F>(self, key: F) -> MinMaxResult<usize>
fn position_minmax_by_key<K, F>(self, key: F) -> MinMaxResult<usize>
§fn position_minmax_by<F>(self, compare: F) -> MinMaxResult<usize>
fn position_minmax_by<F>(self, compare: F) -> MinMaxResult<usize>
§fn exactly_one(self) -> Result<Self::Item, ExactlyOneError<Self>> ⓘwhere
Self: Sized,
fn exactly_one(self) -> Result<Self::Item, ExactlyOneError<Self>> ⓘwhere
Self: Sized,
§fn at_most_one(self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> ⓘwhere
Self: Sized,
fn at_most_one(self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> ⓘwhere
Self: Sized,
Ok(None)
will be returned. If the iterator yields
exactly one element, that element will be returned, otherwise an error will be returned
containing an iterator that has the same output as the input iterator. Read more§fn multipeek(self) -> MultiPeek<Self> ⓘwhere
Self: Sized,
fn multipeek(self) -> MultiPeek<Self> ⓘwhere
Self: Sized,
.next()
values without advancing the base iterator. Read more§fn counts(self) -> HashMap<Self::Item, usize>
fn counts(self) -> HashMap<Self::Item, usize>
HashMap
which
contains each item that appears in the iterator and the number
of times it appears. Read more§fn counts_by<K, F>(self, f: F) -> HashMap<K, usize>
fn counts_by<K, F>(self, f: F) -> HashMap<K, usize>
HashMap
which
contains each item that appears in the iterator and the number
of times it appears,
determining identity using a keying function. Read more§fn multiunzip<FromI>(self) -> FromIwhere
Self: Sized + MultiUnzip<FromI>,
fn multiunzip<FromI>(self) -> FromIwhere
Self: Sized + MultiUnzip<FromI>,
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<IT> MultiUnzip<()> for IT
impl<IT> MultiUnzip<()> for IT
§fn multiunzip(self)
fn multiunzip(self)
§impl<IT, A, FromA> MultiUnzip<(FromA,)> for IT
impl<IT, A, FromA> MultiUnzip<(FromA,)> for IT
§fn multiunzip(self) -> (FromA,) ⓘ
fn multiunzip(self) -> (FromA,) ⓘ
§impl<IT, A, FromA, B, FromB> MultiUnzip<(FromA, FromB)> for IT
impl<IT, A, FromA, B, FromB> MultiUnzip<(FromA, FromB)> for IT
§fn multiunzip(self) -> (FromA, FromB) ⓘ
fn multiunzip(self) -> (FromA, FromB) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC> MultiUnzip<(FromA, FromB, FromC)> for IT
impl<IT, A, FromA, B, FromB, C, FromC> MultiUnzip<(FromA, FromB, FromC)> for IT
§fn multiunzip(self) -> (FromA, FromB, FromC) ⓘ
fn multiunzip(self) -> (FromA, FromB, FromC) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD> MultiUnzip<(FromA, FromB, FromC, FromD)> for IT
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD> MultiUnzip<(FromA, FromB, FromC, FromD)> for IT
§fn multiunzip(self) -> (FromA, FromB, FromC, FromD) ⓘ
fn multiunzip(self) -> (FromA, FromB, FromC, FromD) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE> MultiUnzip<(FromA, FromB, FromC, FromD, FromE)> for IT
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE> MultiUnzip<(FromA, FromB, FromC, FromD, FromE)> for IT
§fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE) ⓘ
fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF)> for IT
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF)> for IT
§fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF) ⓘ
fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG)> for IT
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG)> for IT
§fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG) ⓘ
fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH)> for IT
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH)> for IT
§fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH) ⓘ
fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
§fn multiunzip(
self,
) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI) ⓘ
fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
FromJ: Default + Extend<J>,
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
FromJ: Default + Extend<J>,
§fn multiunzip(
self,
) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ) ⓘ
fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ, K, FromK> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J, K)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
FromJ: Default + Extend<J>,
FromK: Default + Extend<K>,
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ, K, FromK> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J, K)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
FromJ: Default + Extend<J>,
FromK: Default + Extend<K>,
§fn multiunzip(
self,
) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK) ⓘ
fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK) ⓘ
§impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ, K, FromK, L, FromL> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK, FromL)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J, K, L)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
FromJ: Default + Extend<J>,
FromK: Default + Extend<K>,
FromL: Default + Extend<L>,
impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ, K, FromK, L, FromL> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK, FromL)> for ITwhere
IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J, K, L)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
FromC: Default + Extend<C>,
FromD: Default + Extend<D>,
FromE: Default + Extend<E>,
FromF: Default + Extend<F>,
FromG: Default + Extend<G>,
FromH: Default + Extend<H>,
FromI: Default + Extend<I>,
FromJ: Default + Extend<J>,
FromK: Default + Extend<K>,
FromL: Default + Extend<L>,
§fn multiunzip(
self,
) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK, FromL) ⓘ
fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK, FromL) ⓘ
§impl<T, A> MutableStringZilla<A> for T
impl<T, A> MutableStringZilla<A> for T
§fn sz_randomize(&mut self, alphabet: A)
fn sz_randomize(&mut self, alphabet: A)
alphabet
. Read more§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> QueueableCommand for T
impl<T> QueueableCommand for T
§fn queue(&mut self, command: impl Command) -> Result<&mut T, Error> ⓘ
fn queue(&mut self, command: impl Command) -> Result<&mut T, Error> ⓘ
Queues the given command for further execution.
Queued commands will be executed in the following cases:
- When
flush
is called manually on the given type implementingio::Write
. - The terminal will
flush
automatically if the buffer is full. - Each line is flushed in case of
stdout
, because it is line buffered.
§Arguments
-
The command that you want to queue for later execution.
§Examples
use std::io::{self, Write};
use crossterm::{QueueableCommand, style::Print};
fn main() -> io::Result<()> {
let mut stdout = io::stdout();
// `Print` will executed executed when `flush` is called.
stdout
.queue(Print("foo 1\n".to_string()))?
.queue(Print("foo 2".to_string()))?;
// some other code (no execution happening here) ...
// when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
stdout.flush()?;
Ok(())
// ==== Output ====
// foo 1
// foo 2
}
Have a look over at the Command API for more details.
§Notes
- In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
- In case of Windows versions lower than 10, a direct WinAPI call will be made.
The reason for this is that Windows versions lower than 10 do not support ANSI codes,
and can therefore not be written to the given
writer
. Therefore, there is no difference between execute and queue for those old Windows versions.
§impl<'a, T, N> StringZilla<'a, N> for T
impl<'a, T, N> StringZilla<'a, N> for T
§fn sz_find_char_from(&self, needles: N) -> Option<usize> ⓘ
fn sz_find_char_from(&self, needles: N) -> Option<usize> ⓘ
§fn sz_rfind_char_from(&self, needles: N) -> Option<usize> ⓘ
fn sz_rfind_char_from(&self, needles: N) -> Option<usize> ⓘ
§fn sz_find_char_not_from(&self, needles: N) -> Option<usize> ⓘ
fn sz_find_char_not_from(&self, needles: N) -> Option<usize> ⓘ
§fn sz_rfind_char_not_from(&self, needles: N) -> Option<usize> ⓘ
fn sz_rfind_char_not_from(&self, needles: N) -> Option<usize> ⓘ
§fn sz_edit_distance(&self, other: N) -> usize
fn sz_edit_distance(&self, other: N) -> usize
§fn sz_alignment_score(
&self,
other: N,
matrix: [[i8; 256]; 256],
gap: i8,
) -> isize
fn sz_alignment_score( &self, other: N, matrix: [[i8; 256]; 256], gap: i8, ) -> isize
self
and other
using the specified
substitution matrix and gap penalty. Read more§fn sz_matches(&'a self, needle: &'a N) -> RangeMatches<'a> ⓘ
fn sz_matches(&'a self, needle: &'a N) -> RangeMatches<'a> ⓘ
§fn sz_rmatches(&'a self, needle: &'a N) -> RangeRMatches<'a> ⓘ
fn sz_rmatches(&'a self, needle: &'a N) -> RangeRMatches<'a> ⓘ
needle
in self
, searching from the end. Read more§fn sz_splits(&'a self, needle: &'a N) -> RangeSplits<'a> ⓘ
fn sz_splits(&'a self, needle: &'a N) -> RangeSplits<'a> ⓘ
§fn sz_rsplits(&'a self, needle: &'a N) -> RangeRSplits<'a> ⓘ
fn sz_rsplits(&'a self, needle: &'a N) -> RangeRSplits<'a> ⓘ
self
that are separated by the given needle
, searching from the end. Read more§fn sz_find_first_of(&'a self, needles: &'a N) -> RangeMatches<'a> ⓘ
fn sz_find_first_of(&'a self, needles: &'a N) -> RangeMatches<'a> ⓘ
needles
within self
. Read more§fn sz_find_last_of(&'a self, needles: &'a N) -> RangeRMatches<'a> ⓘ
fn sz_find_last_of(&'a self, needles: &'a N) -> RangeRMatches<'a> ⓘ
needles
within self
, searching from the end. Read more§fn sz_find_first_not_of(&'a self, needles: &'a N) -> RangeMatches<'a> ⓘ
fn sz_find_first_not_of(&'a self, needles: &'a N) -> RangeMatches<'a> ⓘ
needles
within self
. Read more§fn sz_find_last_not_of(&'a self, needles: &'a N) -> RangeRMatches<'a> ⓘ
fn sz_find_last_not_of(&'a self, needles: &'a N) -> RangeRMatches<'a> ⓘ
needles
within self
, searching from the end. Read more§impl<W> SynchronizedUpdate for W
impl<W> SynchronizedUpdate for W
§fn sync_update<T>(
&mut self,
operations: impl FnOnce(&mut W) -> T,
) -> Result<T, Error> ⓘ
fn sync_update<T>( &mut self, operations: impl FnOnce(&mut W) -> T, ) -> Result<T, Error> ⓘ
Performs a set of actions within a synchronous update.
Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.
§Arguments
-
Function
A function that performs the operations that must execute in a synchronized update.
§Examples
use std::io;
use crossterm::{ExecutableCommand, SynchronizedUpdate, style::Print};
fn main() -> io::Result<()> {
let mut stdout = io::stdout();
stdout.sync_update(|stdout| {
stdout.execute(Print("foo 1\n".to_string()))?;
stdout.execute(Print("foo 2".to_string()))?;
// The effects of the print command will not be present in the terminal
// buffer, but not visible in the terminal.
std::io::Result::Ok(())
})?;
// The effects of the commands will be visible.
Ok(())
// ==== Output ====
// foo 1
// foo 2
}
§Notes
This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.
When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.
This mode attempts to mitigate that.
When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.