pub type NonZeroUsize = NonZero<usize>;
Expand description
core
An unsigned integer that is known not to equal zero.
Re-exported from core
::num::
.
A usize
that is known not to equal zero.
This enables some memory layout optimization.
For example, Option<NonZeroUsize>
is the same size as usize
:
use std::mem::size_of;
assert_eq!(size_of::<Option<core::num::NonZeroUsize>>(), size_of::<usize>());
§Layout
NonZeroUsize
is guaranteed to have the same layout and bit validity as usize
with the exception that 0
is not a valid instance.
Option<NonZeroUsize>
is guaranteed to be compatible with usize
,
including in FFI.
Thanks to the null pointer optimization,
NonZeroUsize
and Option<NonZeroUsize>
are guaranteed to have the same size and alignment:
use std::num::NonZeroUsize;
assert_eq!(size_of::<NonZeroUsize>(), size_of::<Option<NonZeroUsize>>());
assert_eq!(align_of::<NonZeroUsize>(), align_of::<Option<NonZeroUsize>>());
Aliased Type§
struct NonZeroUsize(/* private fields */);
Implementations
Source§impl<T> NonZero<T>where
T: ZeroablePrimitive,
impl<T> NonZero<T>where
T: ZeroablePrimitive,
1.28.0 (const: 1.47.0) · Sourcepub const fn new(n: T) -> Option<NonZero<T>> ⓘ
pub const fn new(n: T) -> Option<NonZero<T>> ⓘ
Creates a non-zero if the given value is not zero.
1.28.0 (const: 1.28.0) · Sourcepub const unsafe fn new_unchecked(n: T) -> NonZero<T>
pub const unsafe fn new_unchecked(n: T) -> NonZero<T>
Creates a non-zero without checking whether the value is non-zero. This results in undefined behavior if the value is zero.
§Safety
The value must not be zero.
Sourcepub fn from_mut(n: &mut T) -> Option<&mut NonZero<T>> ⓘ
🔬This is a nightly-only experimental API. (nonzero_from_mut
)
pub fn from_mut(n: &mut T) -> Option<&mut NonZero<T>> ⓘ
nonzero_from_mut
)Converts a reference to a non-zero mutable reference if the referenced value is not zero.
Sourcepub unsafe fn from_mut_unchecked(n: &mut T) -> &mut NonZero<T>
🔬This is a nightly-only experimental API. (nonzero_from_mut
)
pub unsafe fn from_mut_unchecked(n: &mut T) -> &mut NonZero<T>
nonzero_from_mut
)Converts a mutable reference to a non-zero mutable reference without checking whether the referenced value is non-zero. This results in undefined behavior if the referenced value is zero.
§Safety
The referenced value must not be zero.
Source§impl NonZero<usize>
impl NonZero<usize>
Sourcepub const fn div_ceil(self, rhs: NonZero<usize>) -> NonZero<usize>
🔬This is a nightly-only experimental API. (unsigned_nonzero_div_ceil
)
pub const fn div_ceil(self, rhs: NonZero<usize>) -> NonZero<usize>
unsigned_nonzero_div_ceil
)Calculates the quotient of self
and rhs
, rounding the result towards positive infinity.
The result is guaranteed to be non-zero.
§Examples
let one = NonZero::new(1usize).unwrap();
let max = NonZero::new(usize::MAX).unwrap();
assert_eq!(one.div_ceil(max), one);
let two = NonZero::new(2usize).unwrap();
let three = NonZero::new(3usize).unwrap();
assert_eq!(three.div_ceil(two), two);
Source§impl NonZero<usize>
impl NonZero<usize>
1.67.0 · Sourcepub const BITS: u32 = 64u32
pub const BITS: u32 = 64u32
The size of this non-zero integer type in bits.
This value is equal to usize::BITS
.
§Examples
assert_eq!(NonZero::<usize>::BITS, usize::BITS);
1.70.0 · Sourcepub const MIN: NonZero<usize>
pub const MIN: NonZero<usize>
The smallest value that can be represented by this non-zero integer type, 1.
§Examples
assert_eq!(NonZero::<usize>::MIN.get(), 1usize);
1.70.0 · Sourcepub const MAX: NonZero<usize>
pub const MAX: NonZero<usize>
The largest value that can be represented by this non-zero
integer type,
equal to usize::MAX
.
§Examples
assert_eq!(NonZero::<usize>::MAX.get(), usize::MAX);
1.53.0 (const: 1.53.0) · Sourcepub const fn leading_zeros(self) -> u32 ⓘ
pub const fn leading_zeros(self) -> u32 ⓘ
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<usize>::new(usize::MAX)?;
assert_eq!(n.leading_zeros(), 0);
1.53.0 (const: 1.53.0) · Sourcepub const fn trailing_zeros(self) -> u32 ⓘ
pub const fn trailing_zeros(self) -> u32 ⓘ
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = NonZero::<usize>::new(0b0101000)?;
assert_eq!(n.trailing_zeros(), 3);
Sourcepub const fn isolate_most_significant_one(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (isolate_most_least_significant_one
)
pub const fn isolate_most_significant_one(self) -> NonZero<usize>
isolate_most_least_significant_one
)Returns self
with only the most significant bit set.
§Example
Basic usage:
#![feature(isolate_most_least_significant_one)]
let a = NonZero::<usize>::new(0b_01100100)?;
let b = NonZero::<usize>::new(0b_01000000)?;
assert_eq!(a.isolate_most_significant_one(), b);
Sourcepub const fn isolate_least_significant_one(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (isolate_most_least_significant_one
)
pub const fn isolate_least_significant_one(self) -> NonZero<usize>
isolate_most_least_significant_one
)Returns self
with only the least significant bit set.
§Example
Basic usage:
#![feature(isolate_most_least_significant_one)]
let a = NonZero::<usize>::new(0b_01100100)?;
let b = NonZero::<usize>::new(0b_00000100)?;
assert_eq!(a.isolate_least_significant_one(), b);
1.86.0 (const: 1.86.0) · Sourcepub const fn count_ones(self) -> NonZero<u32>
pub const fn count_ones(self) -> NonZero<u32>
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
let a = NonZero::<usize>::new(0b100_0000)?;
let b = NonZero::<usize>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
Sourcepub const fn rotate_left(self, n: u32) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn rotate_left(self, n: u32) -> NonZero<usize>
nonzero_bitwise
)Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting operator!
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
let n = NonZero::new(0xaa00000000006e1usize)?;
let m = NonZero::new(0x6e10aa)?;
assert_eq!(n.rotate_left(12), m);
Sourcepub const fn rotate_right(self, n: u32) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn rotate_right(self, n: u32) -> NonZero<usize>
nonzero_bitwise
)Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
let n = NonZero::new(0x6e10aausize)?;
let m = NonZero::new(0xaa00000000006e1)?;
assert_eq!(n.rotate_right(12), m);
Sourcepub const fn swap_bytes(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn swap_bytes(self) -> NonZero<usize>
nonzero_bitwise
)Reverses the byte order of the integer.
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
let n = NonZero::new(0x1234567890123456usize)?;
let m = n.swap_bytes();
assert_eq!(m, NonZero::new(0x5634129078563412)?);
Sourcepub const fn reverse_bits(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn reverse_bits(self) -> NonZero<usize>
nonzero_bitwise
)Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
let n = NonZero::new(0x1234567890123456usize)?;
let m = n.reverse_bits();
assert_eq!(m, NonZero::new(0x6a2c48091e6a2c48)?);
Sourcepub const fn from_be(x: NonZero<usize>) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn from_be(x: NonZero<usize>) -> NonZero<usize>
nonzero_bitwise
)Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
use std::num::NonZeroUsize;
let n = NonZero::new(0x1Ausize)?;
if cfg!(target_endian = "big") {
assert_eq!(NonZeroUsize::from_be(n), n)
} else {
assert_eq!(NonZeroUsize::from_be(n), n.swap_bytes())
}
Sourcepub const fn from_le(x: NonZero<usize>) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn from_le(x: NonZero<usize>) -> NonZero<usize>
nonzero_bitwise
)Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
use std::num::NonZeroUsize;
let n = NonZero::new(0x1Ausize)?;
if cfg!(target_endian = "little") {
assert_eq!(NonZeroUsize::from_le(n), n)
} else {
assert_eq!(NonZeroUsize::from_le(n), n.swap_bytes())
}
Sourcepub const fn to_be(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn to_be(self) -> NonZero<usize>
nonzero_bitwise
)Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
let n = NonZero::new(0x1Ausize)?;
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Sourcepub const fn to_le(self) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_bitwise
)
pub const fn to_le(self) -> NonZero<usize>
nonzero_bitwise
)Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
#![feature(nonzero_bitwise)]
let n = NonZero::new(0x1Ausize)?;
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
1.64.0 (const: 1.64.0) · Sourcepub const fn checked_add(self, other: usize) -> Option<NonZero<usize>> ⓘ
pub const fn checked_add(self, other: usize) -> Option<NonZero<usize>> ⓘ
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
1.64.0 (const: 1.64.0) · Sourcepub const fn saturating_add(self, other: usize) -> NonZero<usize>
pub const fn saturating_add(self, other: usize) -> NonZero<usize>
Adds an unsigned integer to a non-zero value.
Return NonZero::<usize>::MAX
on overflow.
§Examples
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
Sourcepub const unsafe fn unchecked_add(self, other: usize) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_add(self, other: usize) -> NonZero<usize>
nonzero_ops
)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behavior to overflow
even if the result would wrap to a non-zero value.
The behavior is undefined as soon as
self + rhs > usize::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
1.64.0 (const: 1.64.0) · Sourcepub const fn checked_next_power_of_two(self) -> Option<NonZero<usize>> ⓘ
pub const fn checked_next_power_of_two(self) -> Option<NonZero<usize>> ⓘ
Returns the smallest power of two greater than or equal to self
.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2usize)?;
let three = NonZero::new(3usize)?;
let four = NonZero::new(4usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
1.67.0 (const: 1.67.0) · Sourcepub const fn ilog2(self) -> u32 ⓘ
pub const fn ilog2(self) -> u32 ⓘ
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
usize::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(7usize)?.ilog2(), 2);
assert_eq!(NonZero::new(8usize)?.ilog2(), 3);
assert_eq!(NonZero::new(9usize)?.ilog2(), 3);
1.67.0 (const: 1.67.0) · Sourcepub const fn ilog10(self) -> u32 ⓘ
pub const fn ilog10(self) -> u32 ⓘ
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
usize::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZero::new(99usize)?.ilog10(), 1);
assert_eq!(NonZero::new(100usize)?.ilog10(), 2);
assert_eq!(NonZero::new(101usize)?.ilog10(), 2);
1.85.0 (const: 1.85.0) · Sourcepub const fn midpoint(self, rhs: NonZero<usize>) -> NonZero<usize>
pub const fn midpoint(self, rhs: NonZero<usize>) -> NonZero<usize>
Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
let one = NonZero::new(1usize)?;
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
1.59.0 (const: 1.59.0) · Sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = NonZero::new(8usize)?;
assert!(eight.is_power_of_two());
let ten = NonZero::new(10usize)?;
assert!(!ten.is_power_of_two());
1.84.0 (const: 1.84.0) · Sourcepub const fn isqrt(self) -> NonZero<usize>
pub const fn isqrt(self) -> NonZero<usize>
Returns the square root of the number, rounded down.
§Examples
Basic usage:
let ten = NonZero::new(10usize)?;
let three = NonZero::new(3usize)?;
assert_eq!(ten.isqrt(), three);
1.87.0 (const: 1.87.0) · Sourcepub const fn cast_signed(self) -> NonZero<isize>
pub const fn cast_signed(self) -> NonZero<isize>
Returns the bit pattern of self
reinterpreted as a signed integer of the same size.
§Examples
Basic usage:
let n = NonZero::<usize>::MAX;
assert_eq!(n.cast_signed(), NonZero::new(-1isize).unwrap());
1.64.0 (const: 1.64.0) · Sourcepub const fn checked_mul(self, other: NonZero<usize>) -> Option<NonZero<usize>> ⓘ
pub const fn checked_mul(self, other: NonZero<usize>) -> Option<NonZero<usize>> ⓘ
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
1.64.0 (const: 1.64.0) · Sourcepub const fn saturating_mul(self, other: NonZero<usize>) -> NonZero<usize>
pub const fn saturating_mul(self, other: NonZero<usize>) -> NonZero<usize>
Multiplies two non-zero integers together.
Return NonZero::<usize>::MAX
on overflow.
§Examples
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
Sourcepub const unsafe fn unchecked_mul(self, other: NonZero<usize>) -> NonZero<usize>
🔬This is a nightly-only experimental API. (nonzero_ops
)
pub const unsafe fn unchecked_mul(self, other: NonZero<usize>) -> NonZero<usize>
nonzero_ops
)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behavior to overflow
even if the result would wrap to a non-zero value.
The behavior is undefined as soon as
self * rhs > usize::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZero::new(2usize)?;
let four = NonZero::new(4usize)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
1.64.0 (const: 1.64.0) · Sourcepub const fn checked_pow(self, other: u32) -> Option<NonZero<usize>> ⓘ
pub const fn checked_pow(self, other: u32) -> Option<NonZero<usize>> ⓘ
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZero::new(3usize)?;
let twenty_seven = NonZero::new(27usize)?;
let half_max = NonZero::new(usize::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
1.64.0 (const: 1.64.0) · Sourcepub const fn saturating_pow(self, other: u32) -> NonZero<usize>
pub const fn saturating_pow(self, other: u32) -> NonZero<usize>
Raise non-zero value to an integer power.
Return NonZero::<usize>::MAX
on overflow.
§Examples
let three = NonZero::new(3usize)?;
let twenty_seven = NonZero::new(27usize)?;
let max = NonZero::new(usize::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
Trait Implementations§
Source§impl BitSized<64> for NonZeroUsize
impl BitSized<64> for NonZeroUsize
Source§const BIT_SIZE: usize = _
const BIT_SIZE: usize = _
Source§const MIN_BYTE_SIZE: usize = _
const MIN_BYTE_SIZE: usize = _
Source§fn bit_size(&self) -> usize
fn bit_size(&self) -> usize
Source§fn min_byte_size(&self) -> usize
fn min_byte_size(&self) -> usize
Source§impl ExtNumConst for NonZeroUsize
impl ExtNumConst for NonZeroUsize
Source§const NUM_ZERO: Option<NonZeroUsize> = None
const NUM_ZERO: Option<NonZeroUsize> = None
0
), if applicable.Source§const NUM_ONE: NonZeroUsize
const NUM_ONE: NonZeroUsize
1
).Source§const NUM_TWO: NonZeroUsize
const NUM_TWO: NonZeroUsize
2
).Source§const NUM_THREE: NonZeroUsize
const NUM_THREE: NonZeroUsize
3
).Source§const NUM_NEG_ONE: Option<NonZeroUsize> = None
const NUM_NEG_ONE: Option<NonZeroUsize> = None
ONE
(-1
), if applicable.Source§const NUM_MIN_POSITIVE: NonZeroUsize
const NUM_MIN_POSITIVE: NonZeroUsize
Source§const NUM_MAX_NEGATIVE: Option<NonZeroUsize> = None
const NUM_MAX_NEGATIVE: Option<NonZeroUsize> = None
Source§const NUM_MAX_POWER_OF_TWO: NonZeroUsize
const NUM_MAX_POWER_OF_TWO: NonZeroUsize
1.45.0 · Source§impl<T> BitOrAssign<T> for NonZero<T>
impl<T> BitOrAssign<T> for NonZero<T>
Source§fn bitor_assign(&mut self, rhs: T)
fn bitor_assign(&mut self, rhs: T)
|=
operation. Read more1.45.0 · Source§impl<T> BitOrAssign for NonZero<T>
impl<T> BitOrAssign for NonZero<T>
Source§fn bitor_assign(&mut self, rhs: NonZero<T>)
fn bitor_assign(&mut self, rhs: NonZero<T>)
|=
operation. Read more§impl CheckedBitPattern for NonZero<usize>
impl CheckedBitPattern for NonZero<usize>
§type Bits = usize
type Bits = usize
Self
must have the same layout as the specified Bits
except for
the possible invalid bit patterns being checked during
is_valid_bit_pattern
.§fn is_valid_bit_pattern(
bits: &<NonZero<usize> as CheckedBitPattern>::Bits,
) -> bool
fn is_valid_bit_pattern( bits: &<NonZero<usize> as CheckedBitPattern>::Bits, ) -> bool
bits
as &Self
.1.28.0 · Source§impl<T> Clone for NonZero<T>where
T: ZeroablePrimitive,
impl<T> Clone for NonZero<T>where
T: ZeroablePrimitive,
§impl Contiguous for NonZero<usize>
impl Contiguous for NonZero<usize>
§const MAX_VALUE: usize = 18_446_744_073_709_551_615usize
const MAX_VALUE: usize = 18_446_744_073_709_551_615usize
§type Int = usize
type Int = usize
§fn from_integer(value: Self::Int) -> Option<Self> ⓘ
fn from_integer(value: Self::Int) -> Option<Self> ⓘ
value
is within the range for valid instances of this type,
returns Some(converted_value)
, otherwise, returns None
. Read more§fn into_integer(self) -> Self::Int
fn into_integer(self) -> Self::Int
C
into the underlying integral type. This
mostly exists otherwise generic code would need unsafe for the value as integer
Read more