devela::sys::mem

Struct Box

1.0.0 · Source
pub struct Box<T, A = Global>(/* private fields */)
where
    A: Allocator,
    T: ?Sized;
Available on crate feature alloc only.
Expand description

alloc A pointer type that uniquely owns a heap allocation of type T.

It is used as the underlying Storage for the Boxed marker struct, just as a BareBox is used as the storage for [Bare].

A special magic property of Box is that it allows moving with [*boxed], unlike other Deref types. It is hoped that an eventual DerefMove trait will make it possible for other types to opt in to move-from-deref.

Re-exported from [alloc]::boxed:: .


A pointer type that uniquely owns a heap allocation of type T.

See the module-level documentation for more.

Implementations§

Source§

impl<A> Box<dyn Any, A>
where A: Allocator,

1.0.0 · Source

pub fn downcast<T>(self) -> Result<Box<T, A>, Box<dyn Any, A>>
where T: Any,

Attempts to downcast the box to a concrete type.

§Examples
use std::any::Any;

fn print_if_string(value: Box<dyn Any>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Source

pub unsafe fn downcast_unchecked<T>(self) -> Box<T, A>
where T: Any,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the box to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;

let x: Box<dyn Any> = Box::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Source§

impl<A> Box<dyn Any + Send, A>
where A: Allocator,

1.0.0 · Source

pub fn downcast<T>(self) -> Result<Box<T, A>, Box<dyn Any + Send, A>>
where T: Any,

Attempts to downcast the box to a concrete type.

§Examples
use std::any::Any;

fn print_if_string(value: Box<dyn Any + Send>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Source

pub unsafe fn downcast_unchecked<T>(self) -> Box<T, A>
where T: Any,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the box to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;

let x: Box<dyn Any + Send> = Box::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Source§

impl<A> Box<dyn Any + Send + Sync, A>
where A: Allocator,

1.51.0 · Source

pub fn downcast<T>(self) -> Result<Box<T, A>, Box<dyn Any + Send + Sync, A>>
where T: Any,

Attempts to downcast the box to a concrete type.

§Examples
use std::any::Any;

fn print_if_string(value: Box<dyn Any + Send + Sync>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Source

pub unsafe fn downcast_unchecked<T>(self) -> Box<T, A>
where T: Any,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the box to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;

let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Source§

impl<T> Box<T>

1.0.0 · Source

pub fn new(x: T) -> Box<T>

Allocates memory on the heap and then places x into it.

This doesn’t actually allocate if T is zero-sized.

§Examples
let five = Box::new(5);
1.82.0 · Source

pub fn new_uninit() -> Box<MaybeUninit<T>>

Constructs a new box with uninitialized contents.

§Examples
let mut five = Box::<u32>::new_uninit();

let five = unsafe {
    // Deferred initialization:
    five.as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)
Source

pub fn new_zeroed() -> Box<MaybeUninit<T>>

🔬This is a nightly-only experimental API. (new_zeroed_alloc)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(new_zeroed_alloc)]

let zero = Box::<u32>::new_zeroed();
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)
1.33.0 · Source

pub fn pin(x: T) -> Pin<Box<T>>

Constructs a new Pin<Box<T>>. If T does not implement Unpin, then x will be pinned in memory and unable to be moved.

Constructing and pinning of the Box can also be done in two steps: Box::pin(x) does the same as Box::into_pin(Box::new(x)). Consider using into_pin if you already have a Box<T>, or if you want to construct a (pinned) Box in a different way than with Box::new.

Source

pub fn try_new(x: T) -> Result<Box<T>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Allocates memory on the heap then places x into it, returning an error if the allocation fails

This doesn’t actually allocate if T is zero-sized.

§Examples
#![feature(allocator_api)]

let five = Box::try_new(5)?;
Source

pub fn try_new_uninit() -> Result<Box<MaybeUninit<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new box with uninitialized contents on the heap, returning an error if the allocation fails

§Examples
#![feature(allocator_api)]

let mut five = Box::<u32>::try_new_uninit()?;

let five = unsafe {
    // Deferred initialization:
    five.as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5);
Source

pub fn try_new_zeroed() -> Result<Box<MaybeUninit<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes on the heap

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

let zero = Box::<u32>::try_new_zeroed()?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);
Source§

impl<T, A> Box<T, A>
where A: Allocator,

Source

pub fn new_in(x: T, alloc: A) -> Box<T, A>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Allocates memory in the given allocator then places x into it.

This doesn’t actually allocate if T is zero-sized.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let five = Box::new_in(5, System);
Source

pub fn try_new_in(x: T, alloc: A) -> Result<Box<T, A>, AllocError>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Allocates memory in the given allocator then places x into it, returning an error if the allocation fails

This doesn’t actually allocate if T is zero-sized.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let five = Box::try_new_in(5, System)?;
Source

pub fn new_uninit_in(alloc: A) -> Box<MaybeUninit<T>, A>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new box with uninitialized contents in the provided allocator.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut five = Box::<u32, _>::new_uninit_in(System);

let five = unsafe {
    // Deferred initialization:
    five.as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)
Source

pub fn try_new_uninit_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new box with uninitialized contents in the provided allocator, returning an error if the allocation fails

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut five = Box::<u32, _>::try_new_uninit_in(System)?;

let five = unsafe {
    // Deferred initialization:
    five.as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5);
Source

pub fn new_zeroed_in(alloc: A) -> Box<MaybeUninit<T>, A>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes in the provided allocator.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let zero = Box::<u32, _>::new_zeroed_in(System);
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)
Source

pub fn try_new_zeroed_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes in the provided allocator, returning an error if the allocation fails,

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);
Source

pub fn pin_in(x: T, alloc: A) -> Pin<Box<T, A>>
where A: 'static + Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Pin<Box<T, A>>. If T does not implement Unpin, then x will be pinned in memory and unable to be moved.

Constructing and pinning of the Box can also be done in two steps: Box::pin_in(x, alloc) does the same as Box::into_pin(Box::new_in(x, alloc)). Consider using into_pin if you already have a Box<T, A>, or if you want to construct a (pinned) Box in a different way than with Box::new_in.

Source

pub fn into_boxed_slice(boxed: Box<T, A>) -> Box<[T], A>

🔬This is a nightly-only experimental API. (box_into_boxed_slice)

Converts a Box<T> into a Box<[T]>

This conversion does not allocate on the heap and happens in place.

Source

pub fn into_inner(boxed: Box<T, A>) -> T

🔬This is a nightly-only experimental API. (box_into_inner)

Consumes the Box, returning the wrapped value.

§Examples
#![feature(box_into_inner)]

let c = Box::new(5);

assert_eq!(Box::into_inner(c), 5);
Source§

impl<T> Box<[T]>

1.82.0 · Source

pub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]>

Constructs a new boxed slice with uninitialized contents.

§Examples
let mut values = Box::<[u32]>::new_uninit_slice(3);

let values = unsafe {
    // Deferred initialization:
    values[0].as_mut_ptr().write(1);
    values[1].as_mut_ptr().write(2);
    values[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])
Source

pub fn new_zeroed_slice(len: usize) -> Box<[MaybeUninit<T>]>

🔬This is a nightly-only experimental API. (new_zeroed_alloc)

Constructs a new boxed slice with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(new_zeroed_alloc)]

let values = Box::<[u32]>::new_zeroed_slice(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
Source

pub fn try_new_uninit_slice( len: usize, ) -> Result<Box<[MaybeUninit<T>]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents. Returns an error if the allocation fails.

§Examples
#![feature(allocator_api)]

let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
let values = unsafe {
    // Deferred initialization:
    values[0].as_mut_ptr().write(1);
    values[1].as_mut_ptr().write(2);
    values[2].as_mut_ptr().write(3);
    values.assume_init()
};

assert_eq!(*values, [1, 2, 3]);
Source

pub fn try_new_zeroed_slice( len: usize, ) -> Result<Box<[MaybeUninit<T>]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents, with the memory being filled with 0 bytes. Returns an error if the allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0]);
Source

pub fn into_array<const N: usize>(self) -> Option<Box<[T; N]>>

🔬This is a nightly-only experimental API. (slice_as_array)

Converts the boxed slice into a boxed array.

This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.

If N is not exactly equal to the length of self, then this method returns None.

Source§

impl<T, A> Box<[T], A>
where A: Allocator,

Source

pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);

let values = unsafe {
    // Deferred initialization:
    values[0].as_mut_ptr().write(1);
    values[1].as_mut_ptr().write(2);
    values[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])
Source

pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
Source

pub fn try_new_uninit_slice_in( len: usize, alloc: A, ) -> Result<Box<[MaybeUninit<T>], A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if the allocation fails.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
let values = unsafe {
    // Deferred initialization:
    values[0].as_mut_ptr().write(1);
    values[1].as_mut_ptr().write(2);
    values[2].as_mut_ptr().write(3);
    values.assume_init()
};

assert_eq!(*values, [1, 2, 3]);
Source

pub fn try_new_zeroed_slice_in( len: usize, alloc: A, ) -> Result<Box<[MaybeUninit<T>], A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory being filled with 0 bytes. Returns an error if the allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0]);
Source§

impl<T, A> Box<MaybeUninit<T>, A>
where A: Allocator,

1.82.0 · Source

pub unsafe fn assume_init(self) -> Box<T, A>

Converts to Box<T, A>.

§Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

§Examples
let mut five = Box::<u32>::new_uninit();

let five: Box<u32> = unsafe {
    // Deferred initialization:
    five.as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)
Source

pub fn write(boxed: Box<MaybeUninit<T>, A>, value: T) -> Box<T, A>

🔬This is a nightly-only experimental API. (box_uninit_write)

Writes the value and converts to Box<T, A>.

This method converts the box similarly to Box::assume_init but writes value into it before conversion thus guaranteeing safety. In some scenarios use of this method may improve performance because the compiler may be able to optimize copying from stack.

§Examples
#![feature(box_uninit_write)]

let big_box = Box::<[usize; 1024]>::new_uninit();

let mut array = [0; 1024];
for (i, place) in array.iter_mut().enumerate() {
    *place = i;
}

// The optimizer may be able to elide this copy, so previous code writes
// to heap directly.
let big_box = Box::write(big_box, array);

for (i, x) in big_box.iter().enumerate() {
    assert_eq!(*x, i);
}
Source§

impl<T, A> Box<[MaybeUninit<T>], A>
where A: Allocator,

1.82.0 · Source

pub unsafe fn assume_init(self) -> Box<[T], A>

Converts to Box<[T], A>.

§Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the values really are in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

§Examples
let mut values = Box::<[u32]>::new_uninit_slice(3);

let values = unsafe {
    // Deferred initialization:
    values[0].as_mut_ptr().write(1);
    values[1].as_mut_ptr().write(2);
    values[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])
Source§

impl<T> Box<T>
where T: ?Sized,

1.4.0 · Source

pub unsafe fn from_raw(raw: *mut T) -> Box<T>

Constructs a box from a raw pointer.

After calling this function, the raw pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

The raw pointer must point to a block of memory allocated by the global allocator.

The safety conditions are described in the memory layout section.

§Examples

Recreate a Box which was previously converted to a raw pointer using Box::into_raw:

let x = Box::new(5);
let ptr = Box::into_raw(x);
let x = unsafe { Box::from_raw(ptr) };

Manually create a Box from scratch by using the global allocator:

use std::alloc::{alloc, Layout};

unsafe {
    let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `ptr`, though for this
    // simple example `*ptr = 5` would have worked as well.
    ptr.write(5);
    let x = Box::from_raw(ptr);
}
Source

pub unsafe fn from_non_null(ptr: NonNull<T>) -> Box<T>

🔬This is a nightly-only experimental API. (box_vec_non_null)

Constructs a box from a NonNull pointer.

After calling this function, the NonNull pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same NonNull pointer.

The safety conditions are described in the memory layout section.

§Examples

Recreate a Box which was previously converted to a NonNull pointer using Box::into_non_null:

#![feature(box_vec_non_null)]

let x = Box::new(5);
let non_null = Box::into_non_null(x);
let x = unsafe { Box::from_non_null(non_null) };

Manually create a Box from scratch by using the global allocator:

#![feature(box_vec_non_null)]

use std::alloc::{alloc, Layout};
use std::ptr::NonNull;

unsafe {
    let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>())
        .expect("allocation failed");
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `non_null`.
    non_null.write(5);
    let x = Box::from_non_null(non_null);
}
Source§

impl<T, A> Box<T, A>
where A: Allocator, T: ?Sized,

Source

pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Box<T, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a box from a raw pointer in the given allocator.

After calling this function, the raw pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

The raw pointer must point to a block of memory allocated by alloc

§Examples

Recreate a Box which was previously converted to a raw pointer using Box::into_raw_with_allocator:

#![feature(allocator_api)]

use std::alloc::System;

let x = Box::new_in(5, System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
let x = unsafe { Box::from_raw_in(ptr, alloc) };

Manually create a Box from scratch by using the system allocator:

#![feature(allocator_api, slice_ptr_get)]

use std::alloc::{Allocator, Layout, System};

unsafe {
    let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `ptr`, though for this
    // simple example `*ptr = 5` would have worked as well.
    ptr.write(5);
    let x = Box::from_raw_in(ptr, System);
}
Source

pub const unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Box<T, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a box from a NonNull pointer in the given allocator.

After calling this function, the NonNull pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

§Examples

Recreate a Box which was previously converted to a NonNull pointer using Box::into_non_null_with_allocator:

#![feature(allocator_api, box_vec_non_null)]

use std::alloc::System;

let x = Box::new_in(5, System);
let (non_null, alloc) = Box::into_non_null_with_allocator(x);
let x = unsafe { Box::from_non_null_in(non_null, alloc) };

Manually create a Box from scratch by using the system allocator:

#![feature(allocator_api, box_vec_non_null, slice_ptr_get)]

use std::alloc::{Allocator, Layout, System};

unsafe {
    let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `non_null`.
    non_null.write(5);
    let x = Box::from_non_null_in(non_null, System);
}
1.4.0 · Source

pub fn into_raw(b: Box<T, A>) -> *mut T

Consumes the Box, returning a wrapped raw pointer.

The pointer will be properly aligned and non-null.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the raw pointer back into a Box with the Box::from_raw function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_raw(b) instead of b.into_raw(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the raw pointer back into a Box with Box::from_raw for automatic cleanup:

let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
let x = unsafe { Box::from_raw(ptr) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

use std::alloc::{dealloc, Layout};
use std::ptr;

let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
unsafe {
    ptr::drop_in_place(ptr);
    dealloc(ptr as *mut u8, Layout::new::<String>());
}

Note: This is equivalent to the following:

let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
unsafe {
    drop(Box::from_raw(ptr));
}
Source

pub fn into_non_null(b: Box<T, A>) -> NonNull<T>

🔬This is a nightly-only experimental API. (box_vec_non_null)

Consumes the Box, returning a wrapped NonNull pointer.

The pointer will be properly aligned.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the NonNull pointer back into a Box with the Box::from_non_null function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_non_null(b) instead of b.into_non_null(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the NonNull pointer back into a Box with Box::from_non_null for automatic cleanup:

#![feature(box_vec_non_null)]

let x = Box::new(String::from("Hello"));
let non_null = Box::into_non_null(x);
let x = unsafe { Box::from_non_null(non_null) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

#![feature(box_vec_non_null)]

use std::alloc::{dealloc, Layout};

let x = Box::new(String::from("Hello"));
let non_null = Box::into_non_null(x);
unsafe {
    non_null.drop_in_place();
    dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>());
}

Note: This is equivalent to the following:

#![feature(box_vec_non_null)]

let x = Box::new(String::from("Hello"));
let non_null = Box::into_non_null(x);
unsafe {
    drop(Box::from_non_null(non_null));
}
Source

pub fn into_raw_with_allocator(b: Box<T, A>) -> (*mut T, A)

🔬This is a nightly-only experimental API. (allocator_api)

Consumes the Box, returning a wrapped raw pointer and the allocator.

The pointer will be properly aligned and non-null.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the raw pointer back into a Box with the Box::from_raw_in function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_raw_with_allocator(b) instead of b.into_raw_with_allocator(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the raw pointer back into a Box with Box::from_raw_in for automatic cleanup:

#![feature(allocator_api)]

use std::alloc::System;

let x = Box::new_in(String::from("Hello"), System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
let x = unsafe { Box::from_raw_in(ptr, alloc) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

#![feature(allocator_api)]

use std::alloc::{Allocator, Layout, System};
use std::ptr::{self, NonNull};

let x = Box::new_in(String::from("Hello"), System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
unsafe {
    ptr::drop_in_place(ptr);
    let non_null = NonNull::new_unchecked(ptr);
    alloc.deallocate(non_null.cast(), Layout::new::<String>());
}
Source

pub fn into_non_null_with_allocator(b: Box<T, A>) -> (NonNull<T>, A)

🔬This is a nightly-only experimental API. (allocator_api)

Consumes the Box, returning a wrapped NonNull pointer and the allocator.

The pointer will be properly aligned.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the NonNull pointer back into a Box with the Box::from_non_null_in function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_non_null_with_allocator(b) instead of b.into_non_null_with_allocator(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the NonNull pointer back into a Box with Box::from_non_null_in for automatic cleanup:

#![feature(allocator_api, box_vec_non_null)]

use std::alloc::System;

let x = Box::new_in(String::from("Hello"), System);
let (non_null, alloc) = Box::into_non_null_with_allocator(x);
let x = unsafe { Box::from_non_null_in(non_null, alloc) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

#![feature(allocator_api, box_vec_non_null)]

use std::alloc::{Allocator, Layout, System};

let x = Box::new_in(String::from("Hello"), System);
let (non_null, alloc) = Box::into_non_null_with_allocator(x);
unsafe {
    non_null.drop_in_place();
    alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>());
}
Source

pub fn as_mut_ptr(b: &mut Box<T, A>) -> *mut T

🔬This is a nightly-only experimental API. (box_as_ptr)

Returns a raw mutable pointer to the Box’s contents.

The caller must ensure that the Box outlives the pointer this function returns, or else it will end up dangling.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying memory, and thus the returned pointer will remain valid when mixed with other calls to as_ptr and as_mut_ptr. Note that calling other methods that materialize references to the memory may still invalidate this pointer. See the example below for how this guarantee can be used.

§Examples

Due to the aliasing guarantee, the following code is legal:

#![feature(box_as_ptr)]

unsafe {
    let mut b = Box::new(0);
    let ptr1 = Box::as_mut_ptr(&mut b);
    ptr1.write(1);
    let ptr2 = Box::as_mut_ptr(&mut b);
    ptr2.write(2);
    // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
    ptr1.write(3);
}
Source

pub fn as_ptr(b: &Box<T, A>) -> *const T

🔬This is a nightly-only experimental API. (box_as_ptr)

Returns a raw pointer to the Box’s contents.

The caller must ensure that the Box outlives the pointer this function returns, or else it will end up dangling.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the Box, use as_mut_ptr.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying memory, and thus the returned pointer will remain valid when mixed with other calls to as_ptr and as_mut_ptr. Note that calling other methods that materialize mutable references to the memory, as well as writing to this memory, may still invalidate this pointer. See the example below for how this guarantee can be used.

§Examples

Due to the aliasing guarantee, the following code is legal:

#![feature(box_as_ptr)]

unsafe {
    let mut v = Box::new(0);
    let ptr1 = Box::as_ptr(&v);
    let ptr2 = Box::as_mut_ptr(&mut v);
    let _val = ptr2.read();
    // No write to this memory has happened yet, so `ptr1` is still valid.
    let _val = ptr1.read();
    // However, once we do a write...
    ptr2.write(1);
    // ... `ptr1` is no longer valid.
    // This would be UB: let _val = ptr1.read();
}
Source

pub const fn allocator(b: &Box<T, A>) -> &A

🔬This is a nightly-only experimental API. (allocator_api)

Returns a reference to the underlying allocator.

Note: this is an associated function, which means that you have to call it as Box::allocator(&b) instead of b.allocator(). This is so that there is no conflict with a method on the inner type.

1.26.0 · Source

pub fn leak<'a>(b: Box<T, A>) -> &'a mut T
where A: 'a,

Consumes and leaks the Box, returning a mutable reference, &'a mut T.

Note that the type T must outlive the chosen lifetime 'a. If the type has only static references, or none at all, then this may be chosen to be 'static.

This function is mainly useful for data that lives for the remainder of the program’s life. Dropping the returned reference will cause a memory leak. If this is not acceptable, the reference should first be wrapped with the Box::from_raw function producing a Box. This Box can then be dropped which will properly destroy T and release the allocated memory.

Note: this is an associated function, which means that you have to call it as Box::leak(b) instead of b.leak(). This is so that there is no conflict with a method on the inner type.

§Examples

Simple usage:

let x = Box::new(41);
let static_ref: &'static mut usize = Box::leak(x);
*static_ref += 1;
assert_eq!(*static_ref, 42);

Unsized data:

let x = vec![1, 2, 3].into_boxed_slice();
let static_ref = Box::leak(x);
static_ref[0] = 4;
assert_eq!(*static_ref, [4, 2, 3]);
1.63.0 (const: unstable) · Source

pub fn into_pin(boxed: Box<T, A>) -> Pin<Box<T, A>>
where A: 'static,

Converts a Box<T> into a Pin<Box<T>>. If T does not implement Unpin, then *boxed will be pinned in memory and unable to be moved.

This conversion does not allocate on the heap and happens in place.

This is also available via From.

Constructing and pinning a Box with Box::into_pin(Box::new(x)) can also be written more concisely using Box::pin(x). This into_pin method is useful if you already have a Box<T>, or you are constructing a (pinned) Box in a different way than with Box::new.

§Notes

It’s not recommended that crates add an impl like From<Box<T>> for Pin<T>, as it’ll introduce an ambiguity when calling Pin::from. A demonstration of such a poor impl is shown below.

struct Foo; // A type defined in this crate.
impl From<Box<()>> for Pin<Foo> {
    fn from(_: Box<()>) -> Pin<Foo> {
        Pin::new(Foo)
    }
}

let foo = Box::new(());
let bar = Pin::from(foo);

Trait Implementations§

§

impl<T> Archive for Box<T>
where T: ArchiveUnsized + ?Sized,

§

type Archived = ArchivedBox<<T as ArchiveUnsized>::Archived>

The archived representation of this type. Read more
§

type Resolver = BoxResolver

The resolver for this type. It must contain all the additional information from serializing needed to make the archived type from the normal type.
§

fn resolve( &self, resolver: <Box<T> as Archive>::Resolver, out: Place<<Box<T> as Archive>::Archived>, )

Creates the archived version of this value at the given position and writes it to the given output. Read more
§

const COPY_OPTIMIZATION: CopyOptimization<Self> = _

An optimization flag that allows the bytes of this type to be copied directly to a writer instead of calling serialize. Read more
1.64.0 · Source§

impl<T> AsFd for Box<T>
where T: AsFd + ?Sized,

Source§

fn as_fd(&self) -> BorrowedFd<'_>

Borrows the file descriptor. Read more
1.5.0 · Source§

impl<T, A> AsMut<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn as_mut(&mut self) -> &mut T

Converts this type into a mutable reference of the (usually inferred) input type.
1.63.0 · Source§

impl<T> AsRawFd for Box<T>
where T: AsRawFd,

Source§

fn as_raw_fd(&self) -> i32

Extracts the raw file descriptor. Read more
1.5.0 · Source§

impl<T, A> AsRef<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn as_ref(&self) -> &T

Converts this type into a shared reference of the (usually inferred) input type.
§

impl<T> AsyncBufRead for Box<T>
where T: AsyncBufRead + Unpin + ?Sized,

§

fn poll_fill_buf( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<&[u8], Error>>

Attempts to return the contents of the internal buffer, filling it with more data from the inner reader if it is empty. Read more
§

fn consume(self: Pin<&mut Box<T>>, amt: usize)

Tells this buffer that amt bytes have been consumed from the buffer, so they should no longer be returned in calls to poll_read. Read more
1.85.0 · Source§

impl<Args, F, A> AsyncFn<Args> for Box<F, A>
where Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator,

Source§

extern "rust-call" fn async_call( &self, args: Args, ) -> <Box<F, A> as AsyncFnMut<Args>>::CallRefFuture<'_>

🔬This is a nightly-only experimental API. (async_fn_traits)
Call the AsyncFn, returning a future which may borrow from the called closure.
1.85.0 · Source§

impl<Args, F, A> AsyncFnMut<Args> for Box<F, A>
where Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator,

Source§

type CallRefFuture<'a> = <F as AsyncFnMut<Args>>::CallRefFuture<'a> where Box<F, A>: 'a

🔬This is a nightly-only experimental API. (async_fn_traits)
Source§

extern "rust-call" fn async_call_mut( &mut self, args: Args, ) -> <Box<F, A> as AsyncFnMut<Args>>::CallRefFuture<'_>

🔬This is a nightly-only experimental API. (async_fn_traits)
Call the AsyncFnMut, returning a future which may borrow from the called closure.
1.85.0 · Source§

impl<Args, F, A> AsyncFnOnce<Args> for Box<F, A>
where Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator,

Source§

type Output = <F as AsyncFnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (async_fn_traits)
Output type of the called closure’s future.
Source§

type CallOnceFuture = <F as AsyncFnOnce<Args>>::CallOnceFuture

🔬This is a nightly-only experimental API. (async_fn_traits)
Future returned by AsyncFnOnce::async_call_once.
Source§

extern "rust-call" fn async_call_once( self, args: Args, ) -> <Box<F, A> as AsyncFnOnce<Args>>::CallOnceFuture

🔬This is a nightly-only experimental API. (async_fn_traits)
Call the AsyncFnOnce, returning a future which may move out of the called closure.
Source§

impl<S> AsyncIterator for Box<S>
where S: AsyncIterator + Unpin + ?Sized,

Source§

type Item = <S as AsyncIterator>::Item

🔬This is a nightly-only experimental API. (async_iterator)
The type of items yielded by the async iterator.
Source§

fn poll_next( self: Pin<&mut Box<S>>, cx: &mut Context<'_>, ) -> Poll<Option<<Box<S> as AsyncIterator>::Item>>

🔬This is a nightly-only experimental API. (async_iterator)
Attempts to pull out the next value of this async iterator, registering the current task for wakeup if the value is not yet available, and returning None if the async iterator is exhausted. Read more
Source§

fn size_hint(&self) -> (usize, Option<usize>)

🔬This is a nightly-only experimental API. (async_iterator)
Returns the bounds on the remaining length of the async iterator. Read more
§

impl<T> AsyncRead for Box<T>
where T: AsyncRead + Unpin + ?Sized,

§

fn poll_read( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>, ) -> Poll<Result<(), Error>>

Attempts to read from the AsyncRead into buf. Read more
§

impl<T> AsyncSeek for Box<T>
where T: AsyncSeek + Unpin + ?Sized,

§

fn start_seek(self: Pin<&mut Box<T>>, pos: SeekFrom) -> Result<(), Error>

Attempts to seek to an offset, in bytes, in a stream. Read more
§

fn poll_complete( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<u64, Error>>

Waits for a seek operation to complete. Read more
§

impl<T> AsyncWrite for Box<T>
where T: AsyncWrite + Unpin + ?Sized,

§

fn poll_write( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, buf: &[u8], ) -> Poll<Result<usize, Error>>

Attempt to write bytes from buf into the object. Read more
§

fn poll_write_vectored( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, bufs: &[IoSlice<'_>], ) -> Poll<Result<usize, Error>>

Like poll_write, except that it writes from a slice of buffers. Read more
§

fn is_write_vectored(&self) -> bool

Determines if this writer has an efficient poll_write_vectored implementation. Read more
§

fn poll_flush( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<(), Error>>

Attempts to flush the object, ensuring that any buffered data reach their destination. Read more
§

fn poll_shutdown( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<(), Error>>

Initiates or attempts to shut down this writer, returning success when the I/O connection has completely shut down. Read more
1.1.0 · Source§

impl<T, A> Borrow<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
1.1.0 · Source§

impl<T, A> BorrowMut<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Buf for Box<T>
where T: Buf + ?Sized,

§

fn remaining(&self) -> usize

Returns the number of bytes between the current position and the end of the buffer. Read more
§

fn chunk(&self) -> &[u8]

Returns a slice starting at the current position and of length between 0 and Buf::remaining(). Note that this can return a shorter slice (this allows non-continuous internal representation). Read more
§

fn chunks_vectored<'b>(&'b self, dst: &mut [IoSlice<'b>]) -> usize

Fills dst with potentially multiple slices starting at self’s current position. Read more
§

fn advance(&mut self, cnt: usize)

Advance the internal cursor of the Buf Read more
§

fn has_remaining(&self) -> bool

Returns true if there are any more bytes to consume Read more
§

fn copy_to_slice(&mut self, dst: &mut [u8])

Copies bytes from self into dst. Read more
§

fn get_u8(&mut self) -> u8

Gets an unsigned 8 bit integer from self. Read more
§

fn get_i8(&mut self) -> i8

Gets a signed 8 bit integer from self. Read more
§

fn get_u16(&mut self) -> u16

Gets an unsigned 16 bit integer from self in big-endian byte order. Read more
§

fn get_u16_le(&mut self) -> u16

Gets an unsigned 16 bit integer from self in little-endian byte order. Read more
§

fn get_u16_ne(&mut self) -> u16

Gets an unsigned 16 bit integer from self in native-endian byte order. Read more
§

fn get_i16(&mut self) -> i16

Gets a signed 16 bit integer from self in big-endian byte order. Read more
§

fn get_i16_le(&mut self) -> i16

Gets a signed 16 bit integer from self in little-endian byte order. Read more
§

fn get_i16_ne(&mut self) -> i16

Gets a signed 16 bit integer from self in native-endian byte order. Read more
§

fn get_u32(&mut self) -> u32

Gets an unsigned 32 bit integer from self in the big-endian byte order. Read more
§

fn get_u32_le(&mut self) -> u32

Gets an unsigned 32 bit integer from self in the little-endian byte order. Read more
§

fn get_u32_ne(&mut self) -> u32

Gets an unsigned 32 bit integer from self in native-endian byte order. Read more
§

fn get_i32(&mut self) -> i32

Gets a signed 32 bit integer from self in big-endian byte order. Read more
§

fn get_i32_le(&mut self) -> i32

Gets a signed 32 bit integer from self in little-endian byte order. Read more
§

fn get_i32_ne(&mut self) -> i32

Gets a signed 32 bit integer from self in native-endian byte order. Read more
§

fn get_u64(&mut self) -> u64

Gets an unsigned 64 bit integer from self in big-endian byte order. Read more
§

fn get_u64_le(&mut self) -> u64

Gets an unsigned 64 bit integer from self in little-endian byte order. Read more
§

fn get_u64_ne(&mut self) -> u64

Gets an unsigned 64 bit integer from self in native-endian byte order. Read more
§

fn get_i64(&mut self) -> i64

Gets a signed 64 bit integer from self in big-endian byte order. Read more
§

fn get_i64_le(&mut self) -> i64

Gets a signed 64 bit integer from self in little-endian byte order. Read more
§

fn get_i64_ne(&mut self) -> i64

Gets a signed 64 bit integer from self in native-endian byte order. Read more
§

fn get_uint(&mut self, nbytes: usize) -> u64

Gets an unsigned n-byte integer from self in big-endian byte order. Read more
§

fn get_uint_le(&mut self, nbytes: usize) -> u64

Gets an unsigned n-byte integer from self in little-endian byte order. Read more
§

fn get_uint_ne(&mut self, nbytes: usize) -> u64

Gets an unsigned n-byte integer from self in native-endian byte order. Read more
§

fn get_int(&mut self, nbytes: usize) -> i64

Gets a signed n-byte integer from self in big-endian byte order. Read more
§

fn get_int_le(&mut self, nbytes: usize) -> i64

Gets a signed n-byte integer from self in little-endian byte order. Read more
§

fn get_int_ne(&mut self, nbytes: usize) -> i64

Gets a signed n-byte integer from self in native-endian byte order. Read more
§

fn copy_to_bytes(&mut self, len: usize) -> Bytes

Consumes len bytes inside self and returns new instance of Bytes with this data. Read more
§

fn get_u128(&mut self) -> u128

Gets an unsigned 128 bit integer from self in big-endian byte order. Read more
§

fn get_u128_le(&mut self) -> u128

Gets an unsigned 128 bit integer from self in little-endian byte order. Read more
§

fn get_u128_ne(&mut self) -> u128

Gets an unsigned 128 bit integer from self in native-endian byte order. Read more
§

fn get_i128(&mut self) -> i128

Gets a signed 128 bit integer from self in big-endian byte order. Read more
§

fn get_i128_le(&mut self) -> i128

Gets a signed 128 bit integer from self in little-endian byte order. Read more
§

fn get_i128_ne(&mut self) -> i128

Gets a signed 128 bit integer from self in native-endian byte order. Read more
§

fn get_f32(&mut self) -> f32

Gets an IEEE754 single-precision (4 bytes) floating point number from self in big-endian byte order. Read more
§

fn get_f32_le(&mut self) -> f32

Gets an IEEE754 single-precision (4 bytes) floating point number from self in little-endian byte order. Read more
§

fn get_f32_ne(&mut self) -> f32

Gets an IEEE754 single-precision (4 bytes) floating point number from self in native-endian byte order. Read more
§

fn get_f64(&mut self) -> f64

Gets an IEEE754 double-precision (8 bytes) floating point number from self in big-endian byte order. Read more
§

fn get_f64_le(&mut self) -> f64

Gets an IEEE754 double-precision (8 bytes) floating point number from self in little-endian byte order. Read more
§

fn get_f64_ne(&mut self) -> f64

Gets an IEEE754 double-precision (8 bytes) floating point number from self in native-endian byte order. Read more
§

fn take(self, limit: usize) -> Take<Self>
where Self: Sized,

Creates an adaptor which will read at most limit bytes from self. Read more
§

fn chain<U>(self, next: U) -> Chain<Self, U>
where U: Buf, Self: Sized,

Creates an adaptor which will chain this buffer with another. Read more
§

fn reader(self) -> Reader<Self>
where Self: Sized,

Creates an adaptor which implements the Read trait for self. Read more
§

impl<T> BufMut for Box<T>
where T: BufMut + ?Sized,

§

fn remaining_mut(&self) -> usize

Returns the number of bytes that can be written from the current position until the end of the buffer is reached. Read more
§

fn chunk_mut(&mut self) -> &mut UninitSlice

Returns a mutable slice starting at the current BufMut position and of length between 0 and BufMut::remaining_mut(). Note that this can be shorter than the whole remainder of the buffer (this allows non-continuous implementation). Read more
§

unsafe fn advance_mut(&mut self, cnt: usize)

Advance the internal cursor of the BufMut Read more
§

fn put_slice(&mut self, src: &[u8])

Transfer bytes into self from src and advance the cursor by the number of bytes written. Read more
§

fn put_u8(&mut self, n: u8)

Writes an unsigned 8 bit integer to self. Read more
§

fn put_i8(&mut self, n: i8)

Writes a signed 8 bit integer to self. Read more
§

fn put_u16(&mut self, n: u16)

Writes an unsigned 16 bit integer to self in big-endian byte order. Read more
§

fn put_u16_le(&mut self, n: u16)

Writes an unsigned 16 bit integer to self in little-endian byte order. Read more
§

fn put_u16_ne(&mut self, n: u16)

Writes an unsigned 16 bit integer to self in native-endian byte order. Read more
§

fn put_i16(&mut self, n: i16)

Writes a signed 16 bit integer to self in big-endian byte order. Read more
§

fn put_i16_le(&mut self, n: i16)

Writes a signed 16 bit integer to self in little-endian byte order. Read more
§

fn put_i16_ne(&mut self, n: i16)

Writes a signed 16 bit integer to self in native-endian byte order. Read more
§

fn put_u32(&mut self, n: u32)

Writes an unsigned 32 bit integer to self in big-endian byte order. Read more
§

fn put_u32_le(&mut self, n: u32)

Writes an unsigned 32 bit integer to self in little-endian byte order. Read more
§

fn put_u32_ne(&mut self, n: u32)

Writes an unsigned 32 bit integer to self in native-endian byte order. Read more
§

fn put_i32(&mut self, n: i32)

Writes a signed 32 bit integer to self in big-endian byte order. Read more
§

fn put_i32_le(&mut self, n: i32)

Writes a signed 32 bit integer to self in little-endian byte order. Read more
§

fn put_i32_ne(&mut self, n: i32)

Writes a signed 32 bit integer to self in native-endian byte order. Read more
§

fn put_u64(&mut self, n: u64)

Writes an unsigned 64 bit integer to self in the big-endian byte order. Read more
§

fn put_u64_le(&mut self, n: u64)

Writes an unsigned 64 bit integer to self in little-endian byte order. Read more
§

fn put_u64_ne(&mut self, n: u64)

Writes an unsigned 64 bit integer to self in native-endian byte order. Read more
§

fn put_i64(&mut self, n: i64)

Writes a signed 64 bit integer to self in the big-endian byte order. Read more
§

fn put_i64_le(&mut self, n: i64)

Writes a signed 64 bit integer to self in little-endian byte order. Read more
§

fn put_i64_ne(&mut self, n: i64)

Writes a signed 64 bit integer to self in native-endian byte order. Read more
§

fn has_remaining_mut(&self) -> bool

Returns true if there is space in self for more bytes. Read more
§

fn put<T>(&mut self, src: T)
where T: Buf, Self: Sized,

Transfer bytes into self from src and advance the cursor by the number of bytes written. Read more
§

fn put_bytes(&mut self, val: u8, cnt: usize)

Put cnt bytes val into self. Read more
§

fn put_u128(&mut self, n: u128)

Writes an unsigned 128 bit integer to self in the big-endian byte order. Read more
§

fn put_u128_le(&mut self, n: u128)

Writes an unsigned 128 bit integer to self in little-endian byte order. Read more
§

fn put_u128_ne(&mut self, n: u128)

Writes an unsigned 128 bit integer to self in native-endian byte order. Read more
§

fn put_i128(&mut self, n: i128)

Writes a signed 128 bit integer to self in the big-endian byte order. Read more
§

fn put_i128_le(&mut self, n: i128)

Writes a signed 128 bit integer to self in little-endian byte order. Read more
§

fn put_i128_ne(&mut self, n: i128)

Writes a signed 128 bit integer to self in native-endian byte order. Read more
§

fn put_uint(&mut self, n: u64, nbytes: usize)

Writes an unsigned n-byte integer to self in big-endian byte order. Read more
§

fn put_uint_le(&mut self, n: u64, nbytes: usize)

Writes an unsigned n-byte integer to self in the little-endian byte order. Read more
§

fn put_uint_ne(&mut self, n: u64, nbytes: usize)

Writes an unsigned n-byte integer to self in the native-endian byte order. Read more
§

fn put_int(&mut self, n: i64, nbytes: usize)

Writes low nbytes of a signed integer to self in big-endian byte order. Read more
§

fn put_int_le(&mut self, n: i64, nbytes: usize)

Writes low nbytes of a signed integer to self in little-endian byte order. Read more
§

fn put_int_ne(&mut self, n: i64, nbytes: usize)

Writes low nbytes of a signed integer to self in native-endian byte order. Read more
§

fn put_f32(&mut self, n: f32)

Writes an IEEE754 single-precision (4 bytes) floating point number to self in big-endian byte order. Read more
§

fn put_f32_le(&mut self, n: f32)

Writes an IEEE754 single-precision (4 bytes) floating point number to self in little-endian byte order. Read more
§

fn put_f32_ne(&mut self, n: f32)

Writes an IEEE754 single-precision (4 bytes) floating point number to self in native-endian byte order. Read more
§

fn put_f64(&mut self, n: f64)

Writes an IEEE754 double-precision (8 bytes) floating point number to self in big-endian byte order. Read more
§

fn put_f64_le(&mut self, n: f64)

Writes an IEEE754 double-precision (8 bytes) floating point number to self in little-endian byte order. Read more
§

fn put_f64_ne(&mut self, n: f64)

Writes an IEEE754 double-precision (8 bytes) floating point number to self in native-endian byte order. Read more
§

fn limit(self, limit: usize) -> Limit<Self>
where Self: Sized,

Creates an adaptor which can write at most limit bytes to self. Read more
§

fn writer(self) -> Writer<Self>
where Self: Sized,

Creates an adaptor which implements the Write trait for self. Read more
§

fn chain_mut<U>(self, next: U) -> Chain<Self, U>
where U: BufMut, Self: Sized,

Creates an adapter which will chain this buffer with another. Read more
1.0.0 · Source§

impl<B> BufRead for Box<B>
where B: BufRead + ?Sized,

Source§

fn fill_buf(&mut self) -> Result<&[u8], Error>

Returns the contents of the internal buffer, filling it with more data from the inner reader if it is empty. Read more
Source§

fn consume(&mut self, amt: usize)

Tells this buffer that amt bytes have been consumed from the buffer, so they should no longer be returned in calls to read. Read more
Source§

fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes into buf until the delimiter byte or EOF is reached. Read more
Source§

fn read_line(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until a newline (the 0xA byte) is reached, and append them to the provided String buffer. Read more
Source§

fn has_data_left(&mut self) -> Result<bool, Error>

🔬This is a nightly-only experimental API. (buf_read_has_data_left)
Checks if the underlying Read has any data left to be read. Read more
1.83.0 · Source§

fn skip_until(&mut self, byte: u8) -> Result<usize, Error>

Skips all bytes until the delimiter byte or EOF is reached. Read more
1.0.0 · Source§

fn split(self, byte: u8) -> Split<Self>
where Self: Sized,

Returns an iterator over the contents of this reader split on the byte byte. Read more
1.0.0 · Source§

fn lines(self) -> Lines<Self>
where Self: Sized,

Returns an iterator over the lines of this reader. Read more
1.3.0 · Source§

impl<T, A> Clone for Box<[T], A>
where T: Clone, A: Allocator + Clone,

Source§

fn clone_from(&mut self, source: &Box<[T], A>)

Copies source’s contents into self without creating a new allocation, so long as the two are of the same length.

§Examples
let x = Box::new([5, 6, 7]);
let mut y = Box::new([8, 9, 10]);
let yp: *const [i32] = &*y;

y.clone_from(&x);

// The value is the same
assert_eq!(x, y);

// And no allocation occurred
assert_eq!(yp, &*y);
Source§

fn clone(&self) -> Box<[T], A>

Returns a copy of the value. Read more
1.29.0 · Source§

impl Clone for Box<CStr>

Source§

fn clone(&self) -> Box<CStr>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.29.0 · Source§

impl Clone for Box<OsStr>

Source§

fn clone(&self) -> Box<OsStr>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.29.0 · Source§

impl Clone for Box<Path>

Source§

fn clone(&self) -> Box<Path>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.0.0 · Source§

impl<T, A> Clone for Box<T, A>
where T: Clone, A: Allocator + Clone,

Source§

fn clone(&self) -> Box<T, A>

Returns a new box with a clone() of this box’s contents.

§Examples
let x = Box::new(5);
let y = x.clone();

// The value is the same
assert_eq!(x, y);

// But they are unique objects
assert_ne!(&*x as *const i32, &*y as *const i32);
Source§

fn clone_from(&mut self, source: &Box<T, A>)

Copies source’s contents into self without creating a new allocation.

§Examples
let x = Box::new(5);
let mut y = Box::new(10);
let yp: *const i32 = &*y;

y.clone_from(&x);

// The value is the same
assert_eq!(x, y);

// And no allocation occurred
assert_eq!(yp, &*y);
1.3.0 · Source§

impl Clone for Box<str>

Source§

fn clone(&self) -> Box<str>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<G, R, A> Coroutine<R> for Box<G, A>
where G: Coroutine<R> + Unpin + ?Sized, A: Allocator,

Source§

type Yield = <G as Coroutine<R>>::Yield

🔬This is a nightly-only experimental API. (coroutine_trait)
The type of value this coroutine yields. Read more
Source§

type Return = <G as Coroutine<R>>::Return

🔬This is a nightly-only experimental API. (coroutine_trait)
The type of value this coroutine returns. Read more
Source§

fn resume( self: Pin<&mut Box<G, A>>, arg: R, ) -> CoroutineState<<Box<G, A> as Coroutine<R>>::Yield, <Box<G, A> as Coroutine<R>>::Return>

🔬This is a nightly-only experimental API. (coroutine_trait)
Resumes the execution of this coroutine. Read more
Source§

impl<G, R, A> Coroutine<R> for Pin<Box<G, A>>
where G: Coroutine<R> + ?Sized, A: Allocator + 'static,

Source§

type Yield = <G as Coroutine<R>>::Yield

🔬This is a nightly-only experimental API. (coroutine_trait)
The type of value this coroutine yields. Read more
Source§

type Return = <G as Coroutine<R>>::Return

🔬This is a nightly-only experimental API. (coroutine_trait)
The type of value this coroutine returns. Read more
Source§

fn resume( self: Pin<&mut Pin<Box<G, A>>>, arg: R, ) -> CoroutineState<<Pin<Box<G, A>> as Coroutine<R>>::Yield, <Pin<Box<G, A>> as Coroutine<R>>::Return>

🔬This is a nightly-only experimental API. (coroutine_trait)
Resumes the execution of this coroutine. Read more
1.0.0 · Source§

impl<T, A> Debug for Box<T, A>
where T: Debug + ?Sized, A: Allocator,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<T> Default for Box<[T]>

Source§

fn default() -> Box<[T]>

Returns the “default value” for a type. Read more
1.17.0 · Source§

impl Default for Box<CStr>

Source§

fn default() -> Box<CStr>

Returns the “default value” for a type. Read more
1.17.0 · Source§

impl Default for Box<OsStr>

Source§

fn default() -> Box<OsStr>

Returns the “default value” for a type. Read more
1.0.0 · Source§

impl<T> Default for Box<T>
where T: Default,

Source§

fn default() -> Box<T>

Creates a Box<T>, with the Default value for T.

§

impl Default for Box<dyn Modulator>

§

fn default() -> Box<dyn Modulator>

Returns the “default value” for a type. Read more
1.17.0 · Source§

impl Default for Box<str>

Source§

fn default() -> Box<str>

Returns the “default value” for a type. Read more
1.0.0 · Source§

impl<T, A> Deref for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

type Target = T

The resulting type after dereferencing.
Source§

fn deref(&self) -> &T

Dereferences the value.
1.0.0 · Source§

impl<T, A> DerefMut for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn deref_mut(&mut self) -> &mut T

Mutably dereferences the value.
Source§

impl<'de, T> Deserialize<'de> for Box<[T]>
where T: Deserialize<'de>,

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<[T]>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<CStr>

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<CStr>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<OsStr>

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<OsStr>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<Path>

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<Path>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de, T> Deserialize<'de> for Box<T>
where T: Deserialize<'de>,

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<T>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<str>

Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<str>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl<T, D> Deserialize<Box<T>, D> for ArchivedBox<<T as ArchiveUnsized>::Archived>

§

fn deserialize( &self, deserializer: &mut D, ) -> Result<Box<T>, <D as Fallible>::Error>

Deserializes using the given deserializer
1.0.0 · Source§

impl<T, A> Display for Box<T, A>
where T: Display + ?Sized, A: Allocator,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<I, A> DoubleEndedIterator for Box<I, A>

Source§

fn next_back(&mut self) -> Option<<I as Iterator>::Item>

Removes and returns an element from the end of the iterator. Read more
Source§

fn nth_back(&mut self, n: usize) -> Option<<I as Iterator>::Item>

Returns the nth element from the end of the iterator. Read more
Source§

fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>>

🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator from the back by n elements. Read more
1.27.0 · Source§

fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Output = B>,

This is the reverse version of Iterator::try_fold(): it takes elements starting from the back of the iterator. Read more
1.27.0 · Source§

fn rfold<B, F>(self, init: B, f: F) -> B
where Self: Sized, F: FnMut(B, Self::Item) -> B,

An iterator method that reduces the iterator’s elements to a single, final value, starting from the back. Read more
1.27.0 · Source§

fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Searches for an element of an iterator from the back that satisfies a predicate. Read more
1.0.0 · Source§

impl<T, A> Drop for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn drop(&mut self)

Executes the destructor for this type. Read more
1.8.0 · Source§

impl<E> Error for Box<E>
where E: Error,

Source§

fn description(&self) -> &str

👎Deprecated since 1.42.0: use the Display impl or to_string()
Source§

fn cause(&self) -> Option<&dyn Error>

👎Deprecated since 1.33.0: replaced by Error::source, which can support downcasting
Source§

fn source(&self) -> Option<&(dyn Error + 'static)>

Returns the lower-level source of this error, if any. Read more
Source§

fn provide<'b>(&'b self, request: &mut Request<'b>)

🔬This is a nightly-only experimental API. (error_generic_member_access)
Provides type-based access to context intended for error reports. Read more
1.0.0 · Source§

impl<I, A> ExactSizeIterator for Box<I, A>

Source§

fn len(&self) -> usize

Returns the exact remaining length of the iterator. Read more
Source§

fn is_empty(&self) -> bool

🔬This is a nightly-only experimental API. (exact_size_is_empty)
Returns true if the iterator is empty. Read more
1.45.0 · Source§

impl<A> Extend<Box<str, A>> for String
where A: Allocator,

Source§

fn extend<I>(&mut self, iter: I)
where I: IntoIterator<Item = Box<str, A>>,

Extends a collection with the contents of an iterator. Read more
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
1.35.0 · Source§

impl<Args, F, A> Fn<Args> for Box<F, A>
where Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator,

Source§

extern "rust-call" fn call( &self, args: Args, ) -> <Box<F, A> as FnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (fn_traits)
Performs the call operation.
1.35.0 · Source§

impl<Args, F, A> FnMut<Args> for Box<F, A>
where Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator,

Source§

extern "rust-call" fn call_mut( &mut self, args: Args, ) -> <Box<F, A> as FnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (fn_traits)
Performs the call operation.
1.35.0 · Source§

impl<Args, F, A> FnOnce<Args> for Box<F, A>
where Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator,

Source§

type Output = <F as FnOnce<Args>>::Output

The returned type after the call operator is used.
Source§

extern "rust-call" fn call_once( self, args: Args, ) -> <Box<F, A> as FnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (fn_traits)
Performs the call operation.
1.17.0 · Source§

impl<T> From<&[T]> for Box<[T]>
where T: Clone,

Source§

fn from(slice: &[T]) -> Box<[T]>

Converts a &[T] into a Box<[T]>

This conversion allocates on the heap and performs a copy of slice and its contents.

§Examples
// create a &[u8] which will be used to create a Box<[u8]>
let slice: &[u8] = &[104, 101, 108, 108, 111];
let boxed_slice: Box<[u8]> = Box::from(slice);

println!("{boxed_slice:?}");
1.17.0 · Source§

impl From<&CStr> for Box<CStr>

Source§

fn from(s: &CStr) -> Box<CStr>

Converts a &CStr into a Box<CStr>, by copying the contents into a newly allocated Box.

1.17.0 · Source§

impl From<&OsStr> for Box<OsStr>

Source§

fn from(s: &OsStr) -> Box<OsStr>

Copies the string into a newly allocated Box<OsStr>.

1.17.0 · Source§

impl From<&Path> for Box<Path>

Source§

fn from(path: &Path) -> Box<Path>

Creates a boxed Path from a reference.

This will allocate and clone path to it.

1.84.0 · Source§

impl<T> From<&mut [T]> for Box<[T]>
where T: Clone,

Source§

fn from(slice: &mut [T]) -> Box<[T]>

Converts a &mut [T] into a Box<[T]>

This conversion allocates on the heap and performs a copy of slice and its contents.

§Examples
// create a &mut [u8] which will be used to create a Box<[u8]>
let mut array = [104, 101, 108, 108, 111];
let slice: &mut [u8] = &mut array;
let boxed_slice: Box<[u8]> = Box::from(slice);

println!("{boxed_slice:?}");
1.84.0 · Source§

impl From<&mut CStr> for Box<CStr>

Source§

fn from(s: &mut CStr) -> Box<CStr>

Converts a &mut CStr into a Box<CStr>, by copying the contents into a newly allocated Box.

1.84.0 · Source§

impl From<&mut OsStr> for Box<OsStr>

Source§

fn from(s: &mut OsStr) -> Box<OsStr>

Copies the string into a newly allocated Box<OsStr>.

1.84.0 · Source§

impl From<&mut Path> for Box<Path>

Source§

fn from(path: &mut Path) -> Box<Path>

Creates a boxed Path from a reference.

This will allocate and clone path to it.

1.84.0 · Source§

impl From<&mut str> for Box<str>

Source§

fn from(s: &mut str) -> Box<str>

Converts a &mut str into a Box<str>

This conversion allocates on the heap and performs a copy of s.

§Examples
let mut original = String::from("hello");
let original: &mut str = &mut original;
let boxed: Box<str> = Box::from(original);
println!("{boxed}");
1.6.0 · Source§

impl<'a> From<&str> for Box<dyn Error + 'a>

Source§

fn from(err: &str) -> Box<dyn Error + 'a>

Converts a str into a box of dyn Error.

§Examples
use std::error::Error;
use std::mem;

let a_str_error = "a str error";
let a_boxed_error = Box::<dyn Error>::from(a_str_error);
assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a>

Source§

fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a>

Converts a str into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;
use std::mem;

let a_str_error = "a str error";
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
assert!(
    mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
1.17.0 · Source§

impl From<&str> for Box<str>

Source§

fn from(s: &str) -> Box<str>

Converts a &str into a Box<str>

This conversion allocates on the heap and performs a copy of s.

§Examples
let boxed: Box<str> = Box::from("hello");
println!("{boxed}");
1.45.0 · Source§

impl<T, const N: usize> From<[T; N]> for Box<[T]>

Source§

fn from(array: [T; N]) -> Box<[T]>

Converts a [T; N] into a Box<[T]>

This conversion moves the array to newly heap-allocated memory.

§Examples
let boxed: Box<[u8]> = Box::from([4, 2]);
println!("{boxed:?}");
Source§

impl<T, const CAP: usize> From<Array<T, CAP, Boxed>> for Box<[T; CAP]>

Source§

fn from(array: Array<T, CAP, Boxed>) -> Box<[T; CAP]>

Converts to this type from the input type.
Source§

impl<T> From<Box<[T]>> for JsValue
where T: VectorIntoJsValue,

Source§

fn from(vector: Box<[T]>) -> JsValue

Converts to this type from the input type.
1.18.0 · Source§

impl<T, A> From<Box<[T], A>> for Vec<T, A>
where A: Allocator,

Source§

fn from(s: Box<[T], A>) -> Vec<T, A>

Converts a boxed slice into a vector by transferring ownership of the existing heap allocation.

§Examples
let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
assert_eq!(Vec::from(b), vec![1, 2, 3]);
Source§

impl From<Box<[f32]>> for JsValue

Source§

fn from(vector: Box<[f32]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[f64]>> for JsValue

Source§

fn from(vector: Box<[f64]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[i16]>> for JsValue

Source§

fn from(vector: Box<[i16]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[i32]>> for JsValue

Source§

fn from(vector: Box<[i32]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[i64]>> for JsValue

Source§

fn from(vector: Box<[i64]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[i8]>> for JsValue

Source§

fn from(vector: Box<[i8]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[u16]>> for JsValue

Source§

fn from(vector: Box<[u16]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[u32]>> for JsValue

Source§

fn from(vector: Box<[u32]>) -> JsValue

Converts to this type from the input type.
Source§

impl From<Box<[u64]>> for JsValue

Source§

fn from(vector: Box<[u64]>) -> JsValue

Converts to this type from the input type.
§

impl From<Box<[u8]>> for Bytes

§

fn from(slice: Box<[u8]>) -> Bytes

Converts to this type from the input type.
Source§

impl From<Box<[u8]>> for JsValue

Source§

fn from(vector: Box<[u8]>) -> JsValue

Converts to this type from the input type.
1.18.0 · Source§

impl From<Box<CStr>> for CString

Source§

fn from(s: Box<CStr>) -> CString

Converts a Box<CStr> into a CString without copying or allocating.

1.18.0 · Source§

impl From<Box<OsStr>> for OsString

Source§

fn from(boxed: Box<OsStr>) -> OsString

Converts a Box<OsStr> into an OsString without copying or allocating.

1.18.0 · Source§

impl From<Box<Path>> for PathBuf

Source§

fn from(boxed: Box<Path>) -> PathBuf

Converts a Box<Path> into a PathBuf.

This conversion does not allocate or copy memory.

§

impl<T> From<Box<T>> for Atomic<T>

§

fn from(b: Box<T>) -> Atomic<T>

Converts to this type from the input type.
§

impl<T> From<Box<T>> for BoxBytes
where T: BoxBytesOf + ?Sized,

§

fn from(value: Box<T>) -> BoxBytes

Converts to this type from the input type.
§

impl<T> From<Box<T>> for Owned<T>

§

fn from(b: Box<T>) -> Owned<T>

Returns a new owned pointer pointing to b.

§Panics

Panics if the pointer (the Box) is not properly aligned.

§Examples
use crossbeam_epoch::Owned;

let o = unsafe { Owned::from_raw(Box::into_raw(Box::new(1234))) };
1.21.0 · Source§

impl<T, A> From<Box<T, A>> for Arc<T, A>
where A: Allocator, T: ?Sized,

Source§

fn from(v: Box<T, A>) -> Arc<T, A>

Move a boxed object to a new, reference-counted allocation.

§Example
let unique: Box<str> = Box::from("eggplant");
let shared: Arc<str> = Arc::from(unique);
assert_eq!("eggplant", &shared[..]);
1.33.0 · Source§

impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
where A: Allocator + 'static, T: ?Sized,

Source§

fn from(boxed: Box<T, A>) -> Pin<Box<T, A>>

Converts a Box<T> into a Pin<Box<T>>. If T does not implement Unpin, then *boxed will be pinned in memory and unable to be moved.

This conversion does not allocate on the heap and happens in place.

This is also available via Box::into_pin.

Constructing and pinning a Box with <Pin<Box<T>>>::from(Box::new(x)) can also be written more concisely using Box::pin(x). This From implementation is useful if you already have a Box<T>, or you are constructing a (pinned) Box in a different way than with Box::new.

1.21.0 · Source§

impl<T, A> From<Box<T, A>> for Rc<T, A>
where A: Allocator, T: ?Sized,

Source§

fn from(v: Box<T, A>) -> Rc<T, A>

Move a boxed object to a new, reference counted, allocation.

§Example
let original: Box<i32> = Box::new(1);
let shared: Rc<i32> = Rc::from(original);
assert_eq!(1, *shared);
1.18.0 · Source§

impl From<Box<str>> for String

Source§

fn from(s: Box<str>) -> String

Converts the given boxed str slice to a String. It is notable that the str slice is owned.

§Examples
let s1: String = String::from("hello world");
let s2: Box<str> = s1.into_boxed_str();
let s3: String = String::from(s2);

assert_eq!("hello world", s3)
1.19.0 · Source§

impl<A> From<Box<str, A>> for Box<[u8], A>
where A: Allocator,

Source§

fn from(s: Box<str, A>) -> Box<[u8], A>

Converts a Box<str> into a Box<[u8]>

This conversion does not allocate on the heap and happens in place.

§Examples
// create a Box<str> which will be used to create a Box<[u8]>
let boxed: Box<str> = Box::from("hello");
let boxed_str: Box<[u8]> = Box::from(boxed);

// create a &[u8] which will be used to create a Box<[u8]>
let slice: &[u8] = &[104, 101, 108, 108, 111];
let boxed_slice = Box::from(slice);

assert_eq!(boxed_slice, boxed_str);
1.20.0 · Source§

impl From<CString> for Box<CStr>

Source§

fn from(s: CString) -> Box<CStr>

Converts a CString into a Box<CStr> without copying or allocating.

1.45.0 · Source§

impl<T> From<Cow<'_, [T]>> for Box<[T]>
where T: Clone,

Source§

fn from(cow: Cow<'_, [T]>) -> Box<[T]>

Converts a Cow<'_, [T]> into a Box<[T]>

When cow is the Cow::Borrowed variant, this conversion allocates on the heap and copies the underlying slice. Otherwise, it will try to reuse the owned Vec’s allocation.

1.45.0 · Source§

impl From<Cow<'_, CStr>> for Box<CStr>

Source§

fn from(cow: Cow<'_, CStr>) -> Box<CStr>

Converts a Cow<'a, CStr> into a Box<CStr>, by copying the contents if they are borrowed.

1.45.0 · Source§

impl From<Cow<'_, OsStr>> for Box<OsStr>

Source§

fn from(cow: Cow<'_, OsStr>) -> Box<OsStr>

Converts a Cow<'a, OsStr> into a Box<OsStr>, by copying the contents if they are borrowed.

1.45.0 · Source§

impl From<Cow<'_, Path>> for Box<Path>

Source§

fn from(cow: Cow<'_, Path>) -> Box<Path>

Creates a boxed Path from a clone-on-write pointer.

Converting from a Cow::Owned does not clone or allocate.

1.45.0 · Source§

impl From<Cow<'_, str>> for Box<str>

Source§

fn from(cow: Cow<'_, str>) -> Box<str>

Converts a Cow<'_, str> into a Box<str>

When cow is the Cow::Borrowed variant, this conversion allocates on the heap and copies the underlying str. Otherwise, it will try to reuse the owned String’s allocation.

§Examples
use std::borrow::Cow;

let unboxed = Cow::Borrowed("hello");
let boxed: Box<str> = Box::from(unboxed);
println!("{boxed}");
let unboxed = Cow::Owned("hello".to_string());
let boxed: Box<str> = Box::from(unboxed);
println!("{boxed}");
1.22.0 · Source§

impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + 'a>

Source§

fn from(err: Cow<'b, str>) -> Box<dyn Error + 'a>

Converts a Cow into a box of dyn Error.

§Examples
use std::error::Error;
use std::mem;
use std::borrow::Cow;

let a_cow_str_error = Cow::from("a str error");
let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
1.22.0 · Source§

impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a>

Source§

fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a>

Converts a Cow into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;
use std::mem;
use std::borrow::Cow;

let a_cow_str_error = Cow::from("a str error");
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
assert!(
    mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a, E> From<E> for Box<dyn Error + 'a>
where E: Error + 'a,

Source§

fn from(err: E) -> Box<dyn Error + 'a>

Converts a type of Error into a box of dyn Error.

§Examples
use std::error::Error;
use std::fmt;
use std::mem;

#[derive(Debug)]
struct AnError;

impl fmt::Display for AnError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "An error")
    }
}

impl Error for AnError {}

let an_error = AnError;
assert!(0 == mem::size_of_val(&an_error));
let a_boxed_error = Box::<dyn Error>::from(an_error);
assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a, E> From<E> for Box<dyn Error + Send + Sync + 'a>
where E: Error + Send + Sync + 'a,

Source§

fn from(err: E) -> Box<dyn Error + Send + Sync + 'a>

Converts a type of Error + Send + Sync into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;
use std::fmt;
use std::mem;

#[derive(Debug)]
struct AnError;

impl fmt::Display for AnError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "An error")
    }
}

impl Error for AnError {}

unsafe impl Send for AnError {}

unsafe impl Sync for AnError {}

let an_error = AnError;
assert!(0 == mem::size_of_val(&an_error));
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
assert!(
    mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
1.20.0 · Source§

impl From<OsString> for Box<OsStr>

Source§

fn from(s: OsString) -> Box<OsStr>

Converts an OsString into a Box<OsStr> without copying or allocating.

1.20.0 · Source§

impl From<PathBuf> for Box<Path>

Source§

fn from(p: PathBuf) -> Box<Path>

Converts a PathBuf into a Box<Path>.

This conversion currently should not allocate memory, but this behavior is not guaranteed on all platforms or in all future versions.

1.6.0 · Source§

impl<'a> From<String> for Box<dyn Error + 'a>

Source§

fn from(str_err: String) -> Box<dyn Error + 'a>

Converts a String into a box of dyn Error.

§Examples
use std::error::Error;
use std::mem;

let a_string_error = "a string error".to_string();
let a_boxed_error = Box::<dyn Error>::from(a_string_error);
assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a> From<String> for Box<dyn Error + Send + Sync + 'a>

Source§

fn from(err: String) -> Box<dyn Error + Send + Sync + 'a>

Converts a String into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;
use std::mem;

let a_string_error = "a string error".to_string();
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
assert!(
    mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
1.20.0 · Source§

impl From<String> for Box<str>

Source§

fn from(s: String) -> Box<str>

Converts the given String to a boxed str slice that is owned.

§Examples
let s1: String = String::from("hello world");
let s2: Box<str> = Box::from(s1);
let s3: String = String::from(s2);

assert_eq!("hello world", s3)
1.6.0 · Source§

impl<T> From<T> for Box<T>

Source§

fn from(t: T) -> Box<T>

Converts a T into a Box<T>

The conversion allocates on the heap and moves t from the stack into it.

§Examples
let x = 5;
let boxed = Box::new(5);

assert_eq!(Box::from(x), boxed);
1.20.0 · Source§

impl<T, A> From<Vec<T, A>> for Box<[T], A>
where A: Allocator,

Source§

fn from(v: Vec<T, A>) -> Box<[T], A>

Converts a vector into a boxed slice.

Before doing the conversion, this method discards excess capacity like Vec::shrink_to_fit.

§Examples
assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());

Any excess capacity is removed:

let mut vec = Vec::with_capacity(10);
vec.extend([1, 2, 3]);

assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
1.80.0 · Source§

impl<'a> FromIterator<&'a char> for Box<str>

Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = &'a char>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl<'a> FromIterator<&'a str> for Box<str>

Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = &'a str>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl<A> FromIterator<Box<str, A>> for Box<str>
where A: Allocator,

Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = Box<str, A>>,

Creates a value from an iterator. Read more
1.45.0 · Source§

impl<A> FromIterator<Box<str, A>> for String
where A: Allocator,

Source§

fn from_iter<I>(iter: I) -> String
where I: IntoIterator<Item = Box<str, A>>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl<'a> FromIterator<Cow<'a, str>> for Box<str>

Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = Cow<'a, str>>,

Creates a value from an iterator. Read more
1.32.0 · Source§

impl<I> FromIterator<I> for Box<[I]>

Source§

fn from_iter<T>(iter: T) -> Box<[I]>
where T: IntoIterator<Item = I>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl FromIterator<String> for Box<str>

Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = String>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl FromIterator<char> for Box<str>

Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = char>,

Creates a value from an iterator. Read more
§

impl FromParallelIterator<Box<str>> for String

Collects boxed strings from a parallel iterator into one large string.

§

fn from_par_iter<I>(par_iter: I) -> String
where I: IntoParallelIterator<Item = Box<str>>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl<T> FromParallelIterator<T> for Box<[T]>
where T: Send,

Collects items from a parallel iterator into a boxed slice.

§

fn from_par_iter<I>(par_iter: I) -> Box<[T]>
where I: IntoParallelIterator<Item = T>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
Source§

impl<T> FromWasmAbi for Box<[T]>

Source§

type Abi = <T as VectorFromWasmAbi>::Abi

The Wasm ABI type that this converts from when coming back out from the ABI boundary.
Source§

unsafe fn from_abi(js: <Box<[T]> as FromWasmAbi>::Abi) -> Box<[T]>

Recover a Self from Self::Abi. Read more
1.36.0 · Source§

impl<F, A> Future for Box<F, A>
where F: Future + Unpin + ?Sized, A: Allocator,

Source§

type Output = <F as Future>::Output

The type of value produced on completion.
Source§

fn poll( self: Pin<&mut Box<F, A>>, cx: &mut Context<'_>, ) -> Poll<<Box<F, A> as Future>::Output>

Attempts to resolve the future to a final value, registering the current task for wakeup if the value is not yet available. Read more
1.0.0 · Source§

impl<T, A> Hash for Box<T, A>
where T: Hash + ?Sized, A: Allocator,

Source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
1.22.0 · Source§

impl<T, A> Hasher for Box<T, A>
where T: Hasher + ?Sized, A: Allocator,

Source§

fn finish(&self) -> u64

Returns the hash value for the values written so far. Read more
Source§

fn write(&mut self, bytes: &[u8])

Writes some data into this Hasher. Read more
Source§

fn write_u8(&mut self, i: u8)

Writes a single u8 into this hasher.
Source§

fn write_u16(&mut self, i: u16)

Writes a single u16 into this hasher.
Source§

fn write_u32(&mut self, i: u32)

Writes a single u32 into this hasher.
Source§

fn write_u64(&mut self, i: u64)

Writes a single u64 into this hasher.
Source§

fn write_u128(&mut self, i: u128)

Writes a single u128 into this hasher.
Source§

fn write_usize(&mut self, i: usize)

Writes a single usize into this hasher.
Source§

fn write_i8(&mut self, i: i8)

Writes a single i8 into this hasher.
Source§

fn write_i16(&mut self, i: i16)

Writes a single i16 into this hasher.
Source§

fn write_i32(&mut self, i: i32)

Writes a single i32 into this hasher.
Source§

fn write_i64(&mut self, i: i64)

Writes a single i64 into this hasher.
Source§

fn write_i128(&mut self, i: i128)

Writes a single i128 into this hasher.
Source§

fn write_isize(&mut self, i: isize)

Writes a single isize into this hasher.
Source§

fn write_length_prefix(&mut self, len: usize)

🔬This is a nightly-only experimental API. (hasher_prefixfree_extras)
Writes a length prefix into this hasher, as part of being prefix-free. Read more
Source§

fn write_str(&mut self, s: &str)

🔬This is a nightly-only experimental API. (hasher_prefixfree_extras)
Writes a single str into this hasher. Read more
1.80.0 · Source§

impl<'a, I, A> IntoIterator for &'a Box<[I], A>
where A: Allocator,

Source§

type IntoIter = Iter<'a, I>

Which kind of iterator are we turning this into?
Source§

type Item = &'a I

The type of the elements being iterated over.
Source§

fn into_iter(self) -> Iter<'a, I>

Creates an iterator from a value. Read more
1.80.0 · Source§

impl<'a, I, A> IntoIterator for &'a mut Box<[I], A>
where A: Allocator,

Source§

type IntoIter = IterMut<'a, I>

Which kind of iterator are we turning this into?
Source§

type Item = &'a mut I

The type of the elements being iterated over.
Source§

fn into_iter(self) -> IterMut<'a, I>

Creates an iterator from a value. Read more
1.80.0 · Source§

impl<I, A> IntoIterator for Box<[I], A>
where A: Allocator,

Source§

type IntoIter = IntoIter<I, A>

Which kind of iterator are we turning this into?
Source§

type Item = I

The type of the elements being iterated over.
Source§

fn into_iter(self) -> IntoIter<I, A>

Creates an iterator from a value. Read more
Source§

impl<T> IntoWasmAbi for Box<[T]>

Source§

type Abi = <T as VectorIntoWasmAbi>::Abi

The Wasm ABI type that this converts into when crossing the ABI boundary.
Source§

fn into_abi(self) -> <Box<[T]> as IntoWasmAbi>::Abi

Convert self into Self::Abi so that it can be sent across the wasm ABI boundary.
1.0.0 · Source§

impl<I, A> Iterator for Box<I, A>
where I: Iterator + ?Sized, A: Allocator,

Source§

type Item = <I as Iterator>::Item

The type of the elements being iterated over.
Source§

fn next(&mut self) -> Option<<I as Iterator>::Item>

Advances the iterator and returns the next value. Read more
Source§

fn size_hint(&self) -> (usize, Option<usize>)

Returns the bounds on the remaining length of the iterator. Read more
Source§

fn nth(&mut self, n: usize) -> Option<<I as Iterator>::Item>

Returns the nth element of the iterator. Read more
Source§

fn last(self) -> Option<<I as Iterator>::Item>

Consumes the iterator, returning the last element. Read more
Source§

fn next_chunk<const N: usize>( &mut self, ) -> Result<[Self::Item; N], IntoIter<Self::Item, N>>
where Self: Sized,

🔬This is a nightly-only experimental API. (iter_next_chunk)
Advances the iterator and returns an array containing the next N values. Read more
1.0.0 · Source§

fn count(self) -> usize
where Self: Sized,

Consumes the iterator, counting the number of iterations and returning it. Read more
Source§

fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>

🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator by n elements. Read more
1.28.0 · Source§

fn step_by(self, step: usize) -> StepBy<Self>
where Self: Sized,

Creates an iterator starting at the same point, but stepping by the given amount at each iteration. Read more
1.0.0 · Source§

fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
where Self: Sized, U: IntoIterator<Item = Self::Item>,

Takes two iterators and creates a new iterator over both in sequence. Read more
1.0.0 · Source§

fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter>
where Self: Sized, U: IntoIterator,

‘Zips up’ two iterators into a single iterator of pairs. Read more
Source§

fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where Self: Sized, Self::Item: Clone,

🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places a copy of separator between adjacent items of the original iterator. Read more
Source§

fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
where Self: Sized, G: FnMut() -> Self::Item,

🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places an item generated by separator between adjacent items of the original iterator. Read more
1.0.0 · Source§

fn map<B, F>(self, f: F) -> Map<Self, F>
where Self: Sized, F: FnMut(Self::Item) -> B,

Takes a closure and creates an iterator which calls that closure on each element. Read more
1.21.0 · Source§

fn for_each<F>(self, f: F)
where Self: Sized, F: FnMut(Self::Item),

Calls a closure on each element of an iterator. Read more
1.0.0 · Source§

fn filter<P>(self, predicate: P) -> Filter<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator which uses a closure to determine if an element should be yielded. Read more
1.0.0 · Source§

fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where Self: Sized, F: FnMut(Self::Item) -> Option<B>,

Creates an iterator that both filters and maps. Read more
1.0.0 · Source§

fn enumerate(self) -> Enumerate<Self>
where Self: Sized,

Creates an iterator which gives the current iteration count as well as the next value. Read more
1.0.0 · Source§

fn peekable(self) -> Peekable<Self>
where Self: Sized,

Creates an iterator which can use the peek and peek_mut methods to look at the next element of the iterator without consuming it. See their documentation for more information. Read more
1.0.0 · Source§

fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator that skips elements based on a predicate. Read more
1.0.0 · Source§

fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator that yields elements based on a predicate. Read more
1.57.0 · Source§

fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where Self: Sized, P: FnMut(Self::Item) -> Option<B>,

Creates an iterator that both yields elements based on a predicate and maps. Read more
1.0.0 · Source§

fn skip(self, n: usize) -> Skip<Self>
where Self: Sized,

Creates an iterator that skips the first n elements. Read more
1.0.0 · Source§

fn take(self, n: usize) -> Take<Self>
where Self: Sized,

Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner. Read more
1.0.0 · Source§

fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option<B>,

An iterator adapter which, like fold, holds internal state, but unlike fold, produces a new iterator. Read more
1.0.0 · Source§

fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U,

Creates an iterator that works like map, but flattens nested structure. Read more
1.29.0 · Source§

fn flatten(self) -> Flatten<Self>
where Self: Sized, Self::Item: IntoIterator,

Creates an iterator that flattens nested structure. Read more
Source§

fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
where Self: Sized, F: FnMut(&[Self::Item; N]) -> R,

🔬This is a nightly-only experimental API. (iter_map_windows)
Calls the given function f for each contiguous window of size N over self and returns an iterator over the outputs of f. Like slice::windows(), the windows during mapping overlap as well. Read more
1.0.0 · Source§

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Creates an iterator which ends after the first None. Read more
1.0.0 · Source§

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where Self: Sized, F: FnMut(&Self::Item),

Does something with each element of an iterator, passing the value on. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Borrows an iterator, rather than consuming it. Read more
1.0.0 · Source§

fn collect<B>(self) -> B
where B: FromIterator<Self::Item>, Self: Sized,

Transforms an iterator into a collection. Read more
Source§

fn try_collect<B>( &mut self, ) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
where Self: Sized, Self::Item: Try, <Self::Item as Try>::Residual: Residual<B>, B: FromIterator<<Self::Item as Try>::Output>,

🔬This is a nightly-only experimental API. (iterator_try_collect)
Fallibly transforms an iterator into a collection, short circuiting if a failure is encountered. Read more
Source§

fn collect_into<E>(self, collection: &mut E) -> &mut E
where E: Extend<Self::Item>, Self: Sized,

🔬This is a nightly-only experimental API. (iter_collect_into)
Collects all the items from an iterator into a collection. Read more
1.0.0 · Source§

fn partition<B, F>(self, f: F) -> (B, B)
where Self: Sized, B: Default + Extend<Self::Item>, F: FnMut(&Self::Item) -> bool,

Consumes an iterator, creating two collections from it. Read more
Source§

fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
where T: 'a, Self: Sized + DoubleEndedIterator<Item = &'a mut T>, P: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (iter_partition_in_place)
Reorders the elements of this iterator in-place according to the given predicate, such that all those that return true precede all those that return false. Returns the number of true elements found. Read more
Source§

fn is_partitioned<P>(self, predicate: P) -> bool
where Self: Sized, P: FnMut(Self::Item) -> bool,

🔬This is a nightly-only experimental API. (iter_is_partitioned)
Checks if the elements of this iterator are partitioned according to the given predicate, such that all those that return true precede all those that return false. Read more
1.27.0 · Source§

fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Output = B>,

An iterator method that applies a function as long as it returns successfully, producing a single, final value. Read more
1.27.0 · Source§

fn try_for_each<F, R>(&mut self, f: F) -> R
where Self: Sized, F: FnMut(Self::Item) -> R, R: Try<Output = ()>,

An iterator method that applies a fallible function to each item in the iterator, stopping at the first error and returning that error. Read more
1.0.0 · Source§

fn fold<B, F>(self, init: B, f: F) -> B
where Self: Sized, F: FnMut(B, Self::Item) -> B,

Folds every element into an accumulator by applying an operation, returning the final result. Read more
1.51.0 · Source§

fn reduce<F>(self, f: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(Self::Item, Self::Item) -> Self::Item,

Reduces the elements to a single one, by repeatedly applying a reducing operation. Read more
Source§

fn try_reduce<R>( &mut self, f: impl FnMut(Self::Item, Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
where Self: Sized, R: Try<Output = Self::Item>, <R as Try>::Residual: Residual<Option<Self::Item>>,

🔬This is a nightly-only experimental API. (iterator_try_reduce)
Reduces the elements to a single one by repeatedly applying a reducing operation. If the closure returns a failure, the failure is propagated back to the caller immediately. Read more
1.0.0 · Source§

fn all<F>(&mut self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> bool,

Tests if every element of the iterator matches a predicate. Read more
1.0.0 · Source§

fn any<F>(&mut self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> bool,

Tests if any element of the iterator matches a predicate. Read more
1.0.0 · Source§

fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Searches for an element of an iterator that satisfies a predicate. Read more
1.30.0 · Source§

fn find_map<B, F>(&mut self, f: F) -> Option<B>
where Self: Sized, F: FnMut(Self::Item) -> Option<B>,

Applies function to the elements of iterator and returns the first non-none result. Read more
Source§

fn try_find<R>( &mut self, f: impl FnMut(&Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
where Self: Sized, R: Try<Output = bool>, <R as Try>::Residual: Residual<Option<Self::Item>>,

🔬This is a nightly-only experimental API. (try_find)
Applies function to the elements of iterator and returns the first true result or the first error. Read more
1.0.0 · Source§

fn position<P>(&mut self, predicate: P) -> Option<usize>
where Self: Sized, P: FnMut(Self::Item) -> bool,

Searches for an element in an iterator, returning its index. Read more
1.0.0 · Source§

fn rposition<P>(&mut self, predicate: P) -> Option<usize>
where P: FnMut(Self::Item) -> bool, Self: Sized + ExactSizeIterator + DoubleEndedIterator,

Searches for an element in an iterator from the right, returning its index. Read more
1.0.0 · Source§

fn max(self) -> Option<Self::Item>
where Self: Sized, Self::Item: Ord,

Returns the maximum element of an iterator. Read more
1.0.0 · Source§

fn min(self) -> Option<Self::Item>
where Self: Sized, Self::Item: Ord,

Returns the minimum element of an iterator. Read more
1.6.0 · Source§

fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where B: Ord, Self: Sized, F: FnMut(&Self::Item) -> B,

Returns the element that gives the maximum value from the specified function. Read more
1.15.0 · Source§

fn max_by<F>(self, compare: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Returns the element that gives the maximum value with respect to the specified comparison function. Read more
1.6.0 · Source§

fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
where B: Ord, Self: Sized, F: FnMut(&Self::Item) -> B,

Returns the element that gives the minimum value from the specified function. Read more
1.15.0 · Source§

fn min_by<F>(self, compare: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Returns the element that gives the minimum value with respect to the specified comparison function. Read more
1.0.0 · Source§

fn rev(self) -> Rev<Self>
where Self: Sized + DoubleEndedIterator,

Reverses an iterator’s direction. Read more
1.0.0 · Source§

fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Iterator<Item = (A, B)>,

Converts an iterator of pairs into a pair of containers. Read more
1.36.0 · Source§

fn copied<'a, T>(self) -> Copied<Self>
where T: 'a + Copy, Self: Sized + Iterator<Item = &'a T>,

Creates an iterator which copies all of its elements. Read more
1.0.0 · Source§

fn cloned<'a, T>(self) -> Cloned<Self>
where T: 'a + Clone, Self: Sized + Iterator<Item = &'a T>,

Creates an iterator which clones all of its elements. Read more
1.0.0 · Source§

fn cycle(self) -> Cycle<Self>
where Self: Sized + Clone,

Repeats an iterator endlessly. Read more
Source§

fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
where Self: Sized,

🔬This is a nightly-only experimental API. (iter_array_chunks)
Returns an iterator over N elements of the iterator at a time. Read more
1.11.0 · Source§

fn sum<S>(self) -> S
where Self: Sized, S: Sum<Self::Item>,

Sums the elements of an iterator. Read more
1.11.0 · Source§

fn product<P>(self) -> P
where Self: Sized, P: Product<Self::Item>,

Iterates over the entire iterator, multiplying all the elements Read more
1.5.0 · Source§

fn cmp<I>(self, other: I) -> Ordering
where I: IntoIterator<Item = Self::Item>, Self::Item: Ord, Self: Sized,

Lexicographically compares the elements of this Iterator with those of another. Read more
Source§

fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering,

🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
1.5.0 · Source§

fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Lexicographically compares the PartialOrd elements of this Iterator with those of another. The comparison works like short-circuit evaluation, returning a result without comparing the remaining elements. As soon as an order can be determined, the evaluation stops and a result is returned. Read more
Source§

fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,

🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
1.5.0 · Source§

fn eq<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialEq<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are equal to those of another. Read more
Source§

fn eq_by<I, F>(self, other: I, eq: F) -> bool
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,

🔬This is a nightly-only experimental API. (iter_order_by)
Determines if the elements of this Iterator are equal to those of another with respect to the specified equality function. Read more
1.5.0 · Source§

fn ne<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialEq<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are not equal to those of another. Read more
1.5.0 · Source§

fn lt<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically less than those of another. Read more
1.5.0 · Source§

fn le<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically less or equal to those of another. Read more
1.5.0 · Source§

fn gt<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically greater than those of another. Read more
1.5.0 · Source§

fn ge<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically greater than or equal to those of another. Read more
1.82.0 · Source§

fn is_sorted(self) -> bool
where Self: Sized, Self::Item: PartialOrd,

Checks if the elements of this iterator are sorted. Read more
1.82.0 · Source§

fn is_sorted_by<F>(self, compare: F) -> bool
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> bool,

Checks if the elements of this iterator are sorted using the given comparator function. Read more
1.82.0 · Source§

fn is_sorted_by_key<F, K>(self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> K, K: PartialOrd,

Checks if the elements of this iterator are sorted using the given key extraction function. Read more
Source§

impl<T> Log for Box<T>
where T: Log + ?Sized,

Source§

fn enabled(&self, metadata: &Metadata<'_>) -> bool

Determines if a log message with the specified metadata would be logged. Read more
Source§

fn log(&self, record: &Record<'_>)

Logs the Record. Read more
Source§

fn flush(&self)

Flushes any buffered records. Read more
Source§

impl<T> OptionFromWasmAbi for Box<[T]>
where Box<[T]>: FromWasmAbi<Abi = WasmSlice>,

Source§

fn is_none(slice: &WasmSlice) -> bool

Tests whether the argument is a “none” instance. If so it will be deserialized as None, and otherwise it will be passed to FromWasmAbi.
Source§

impl<T> OptionIntoWasmAbi for Box<[T]>
where Box<[T]>: IntoWasmAbi<Abi = WasmSlice>,

Source§

fn none() -> WasmSlice

Returns an ABI instance indicating “none”, which JS will interpret as the None branch of this option. Read more
1.0.0 · Source§

impl<T, A> Ord for Box<T, A>
where T: Ord + ?Sized, A: Allocator,

Source§

fn cmp(&self, other: &Box<T, A>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
§

impl ParallelExtend<Box<str>> for String

Extends a string with boxed strings from a parallel iterator.

§

fn par_extend<I>(&mut self, par_iter: I)
where I: IntoParallelIterator<Item = Box<str>>,

Extends an instance of the collection with the elements drawn from the parallel iterator par_iter. Read more
§

impl<I, O, E> Parser<I, O, E> for Box<dyn Parser<I, O, E> + '_>

§

fn parse_next(&mut self, i: &mut I) -> Result<O, ErrMode<E>>

Take tokens from the Stream, turning it into the output Read more
§

fn parse(&mut self, input: I) -> Result<O, ParseError<I, E>>
where Self: Sized, I: Stream + StreamIsPartial, E: ParserError<I>,

Parse all of input, generating O from it
§

fn parse_peek(&mut self, input: I) -> Result<(I, O), ErrMode<E>>

Take tokens from the Stream, turning it into the output Read more
§

fn by_ref(&mut self) -> ByRef<'_, Self>
where Self: Sized,

Treat &mut Self as a parser Read more
§

fn value<O2>(self, val: O2) -> Value<Self, I, O, O2, E>
where Self: Sized, O2: Clone,

Produce the provided value Read more
§

fn default_value<O2>(self) -> DefaultValue<Self, I, O, O2, E>
where Self: Sized, O2: Default,

Produce a type’s default value Read more
§

fn void(self) -> Void<Self, I, O, E>
where Self: Sized,

Discards the output of the Parser Read more
§

fn output_into<O2>(self) -> OutputInto<Self, I, O, O2, E>
where Self: Sized, O: Into<O2>,

Convert the parser’s output to another type using std::convert::From Read more
§

fn take(self) -> Take<Self, I, O, E>
where Self: Sized, I: Stream,

Produce the consumed input as produced value. Read more
§

fn recognize(self) -> Take<Self, I, O, E>
where Self: Sized, I: Stream,

👎Deprecated since 0.6.14: Replaced with Parser::take
Replaced with Parser::take
§

fn with_taken(self) -> WithTaken<Self, I, O, E>
where Self: Sized, I: Stream,

Produce the consumed input with the output Read more
§

fn with_recognized(self) -> WithTaken<Self, I, O, E>
where Self: Sized, I: Stream,

👎Deprecated since 0.6.14: Replaced with Parser::with_taken
Replaced with Parser::with_taken
§

fn span(self) -> Span<Self, I, O, E>
where Self: Sized, I: Stream + Location,

Produce the location of the consumed input as produced value. Read more
§

fn with_span(self) -> WithSpan<Self, I, O, E>
where Self: Sized, I: Stream + Location,

Produce the location of consumed input with the output Read more
§

fn map<G, O2>(self, map: G) -> Map<Self, G, I, O, O2, E>
where G: FnMut(O) -> O2, Self: Sized,

Maps a function over the output of a parser Read more
§

fn try_map<G, O2, E2>(self, map: G) -> TryMap<Self, G, I, O, O2, E, E2>
where Self: Sized, G: FnMut(O) -> Result<O2, E2>, I: Stream, E: FromExternalError<I, E2>,

Applies a function returning a Result over the output of a parser. Read more
§

fn verify_map<G, O2>(self, map: G) -> VerifyMap<Self, G, I, O, O2, E>
where Self: Sized, G: FnMut(O) -> Option<O2>, I: Stream, E: ParserError<I>,

§

fn flat_map<G, H, O2>(self, map: G) -> FlatMap<Self, G, H, I, O, O2, E>
where Self: Sized, G: FnMut(O) -> H, H: Parser<I, O2, E>,

Creates a parser from the output of this one Read more
§

fn and_then<G, O2>(self, inner: G) -> AndThen<Self, G, I, O, O2, E>
where Self: Sized, G: Parser<O, O2, E>, O: StreamIsPartial, I: Stream,

Applies a second parser over the output of the first one Read more
§

fn parse_to<O2>(self) -> ParseTo<Self, I, O, O2, E>
where Self: Sized, I: Stream, O: ParseSlice<O2>, E: ParserError<I>,

Apply std::str::FromStr to the output of the parser Read more
§

fn verify<G, O2>(self, filter: G) -> Verify<Self, G, I, O, O2, E>
where Self: Sized, G: FnMut(&O2) -> bool, I: Stream, O: Borrow<O2>, E: ParserError<I>, O2: ?Sized,

Returns the output of the child parser if it satisfies a verification function. Read more
§

fn context<C>(self, context: C) -> Context<Self, I, O, E, C>
where Self: Sized, I: Stream, E: AddContext<I, C>, C: Clone + Debug,

If parsing fails, add context to the error Read more
§

fn complete_err(self) -> CompleteErr<Self>
where Self: Sized,

§

fn err_into<E2>(self) -> ErrInto<Self, I, O, E, E2>
where Self: Sized, E: Into<E2>,

Convert the parser’s error to another type using std::convert::From
§

impl<T, U> PartialEq<Box<U>> for ArchivedBox<T>
where T: ArchivePointee + PartialEq<U> + ?Sized, U: ?Sized,

§

fn eq(&self, other: &Box<U>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 · Source§

impl<T, A> PartialEq for Box<T, A>
where T: PartialEq + ?Sized, A: Allocator,

Source§

fn eq(&self, other: &Box<T, A>) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &Box<T, A>) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<T, U> PartialOrd<Box<U>> for ArchivedBox<T>
where T: ArchivePointee + PartialOrd<U> + ?Sized, U: ?Sized,

§

fn partial_cmp(&self, other: &Box<U>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
1.0.0 · Source§

impl<T, A> PartialOrd for Box<T, A>
where T: PartialOrd + ?Sized, A: Allocator,

Source§

fn partial_cmp(&self, other: &Box<T, A>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
Source§

fn lt(&self, other: &Box<T, A>) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
Source§

fn le(&self, other: &Box<T, A>) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
Source§

fn ge(&self, other: &Box<T, A>) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

fn gt(&self, other: &Box<T, A>) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

impl<T, A> Pointer for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<R> Read for Box<R>
where R: Read + ?Sized,

Source§

fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error>

Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more
Source§

fn read_buf(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Pull some bytes from this source into the specified buffer. Read more
Source§

fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize, Error>

Like read, except that it reads into a slice of buffers. Read more
Source§

fn is_read_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Reader has an efficient read_vectored implementation. Read more
Source§

fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes until EOF in this source, placing them into buf. Read more
Source§

fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until EOF in this source, appending them to buf. Read more
Source§

fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>

Reads the exact number of bytes required to fill buf. Read more
Source§

fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Reads the exact number of bytes required to fill cursor. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adaptor for this instance of Read. Read more
1.0.0 · Source§

fn bytes(self) -> Bytes<Self>
where Self: Sized,

Transforms this Read instance to an Iterator over its bytes. Read more
1.0.0 · Source§

fn chain<R>(self, next: R) -> Chain<Self, R>
where R: Read, Self: Sized,

Creates an adapter which will chain this stream with another. Read more
1.0.0 · Source§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an adapter which will read at most limit bytes from it. Read more
Source§

impl<R> RngCore for Box<R>
where R: RngCore + ?Sized,

Source§

fn next_u32(&mut self) -> u32

Return the next random u32. Read more
Source§

fn next_u64(&mut self) -> u64

Return the next random u64. Read more
Source§

fn fill_bytes(&mut self, dest: &mut [u8])

Fill dest with random data. Read more
Source§

fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>

Fill dest entirely with random data. Read more
1.0.0 · Source§

impl<S> Seek for Box<S>
where S: Seek + ?Sized,

Source§

fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error>

Seek to an offset, in bytes, in a stream. Read more
Source§

fn stream_position(&mut self) -> Result<u64, Error>

Returns the current seek position from the start of the stream. Read more
1.55.0 · Source§

fn rewind(&mut self) -> Result<(), Error>

Rewind to the beginning of a stream. Read more
Source§

fn stream_len(&mut self) -> Result<u64, Error>

🔬This is a nightly-only experimental API. (seek_stream_len)
Returns the length of this stream (in bytes). Read more
1.80.0 · Source§

fn seek_relative(&mut self, offset: i64) -> Result<(), Error>

Seeks relative to the current position. Read more
§

impl<T, S> Serialize<S> for Box<T>
where T: SerializeUnsized<S> + ?Sized, S: Fallible + ?Sized,

§

fn serialize( &self, serializer: &mut S, ) -> Result<<Box<T> as Archive>::Resolver, <S as Fallible>::Error>

Writes the dependencies for the object and returns a resolver that can create the archived type.
Source§

impl<T> Serialize for Box<T>
where T: Serialize + ?Sized,

Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl<T> Source for Box<T>
where T: Source + ?Sized,

§

fn register( &mut self, registry: &Registry, token: Token, interests: Interest, ) -> Result<(), Error>

Register self with the given Registry instance. Read more
§

fn reregister( &mut self, registry: &Registry, token: Token, interests: Interest, ) -> Result<(), Error>

Re-register self with the given Registry instance. Read more
§

fn deregister(&mut self, registry: &Registry) -> Result<(), Error>

Deregister self from the given Registry instance. Read more
§

impl<S> Source for Box<dyn Source<Item = S>>
where S: Sample,

§

fn current_frame_len(&self) -> Option<usize>

Returns the number of samples before the current frame ends. None means “infinite” or “until the sound ends”. Should never return 0 unless there’s no more data. Read more
§

fn channels(&self) -> u16

Returns the number of channels. Channels are always interleaved.
§

fn sample_rate(&self) -> u32

Returns the rate at which the source should be played. In number of samples per second.
§

fn total_duration(&self) -> Option<Duration>

Returns the total duration of this source, if known. Read more
§

fn try_seek(&mut self, pos: Duration) -> Result<(), SeekError>

Attempts to seek to a given position in the current source. Read more
§

fn buffered(self) -> Buffered<Self>
where Self: Sized,

Stores the source in a buffer in addition to returning it. This iterator can be cloned.
§

fn mix<S>(self, other: S) -> Mix<Self, S>
where Self: Sized, Self::Item: FromSample<<S as Iterator>::Item>, S: Source, <S as Iterator>::Item: Sample,

Mixes this source with another one.
§

fn repeat_infinite(self) -> Repeat<Self>
where Self: Sized,

Repeats this source forever. Read more
§

fn take_duration(self, duration: Duration) -> TakeDuration<Self>
where Self: Sized,

Takes a certain duration of this source and then stops.
§

fn delay(self, duration: Duration) -> Delay<Self>
where Self: Sized,

Delays the sound by a certain duration. Read more
§

fn skip_duration(self, duration: Duration) -> SkipDuration<Self>
where Self: Sized,

Immediately skips a certain duration of this source. Read more
§

fn amplify(self, value: f32) -> Amplify<Self>
where Self: Sized,

Amplifies the sound by the given value.
§

fn automatic_gain_control( self, target_level: f32, attack_time: f32, release_time: f32, absolute_max_gain: f32, ) -> AutomaticGainControl<Self>
where Self: Sized,

Applies automatic gain control to the sound. Read more
§

fn take_crossfade_with<S>( self, other: S, duration: Duration, ) -> Mix<TakeDuration<Self>, FadeIn<TakeDuration<S>>>
where S: Source, Self: Sized, Self::Item: FromSample<<S as Iterator>::Item>, <S as Iterator>::Item: Sample,

Mixes this sound fading out with another sound fading in for the given duration. Read more
§

fn fade_in(self, duration: Duration) -> FadeIn<Self>
where Self: Sized,

Fades in the sound.
§

fn fade_out(self, duration: Duration) -> FadeOut<Self>
where Self: Sized,

Fades out the sound.
§

fn linear_gain_ramp( self, duration: Duration, start_value: f32, end_value: f32, clamp_end: bool, ) -> LinearGainRamp<Self>
where Self: Sized,

Applies a linear gain ramp to the sound. Read more
§

fn periodic_access<F>( self, period: Duration, access: F, ) -> PeriodicAccess<Self, F>
where Self: Sized, F: FnMut(&mut Self),

Calls the access closure on Self the first time the source is iterated and every time period elapses. Read more
§

fn speed(self, ratio: f32) -> Speed<Self>
where Self: Sized,

Changes the play speed of the sound. Does not adjust the samples, only the playback speed. Read more
§

fn reverb( self, duration: Duration, amplitude: f32, ) -> Mix<Self, Delay<Amplify<Self>>>
where Self: Sized + Clone,

Adds a basic reverb effect. Read more
§

fn convert_samples<D>(self) -> SamplesConverter<Self, D>
where Self: Sized, D: Sample,

Converts the samples of this source to another type.
§

fn pausable(self, initially_paused: bool) -> Pausable<Self>
where Self: Sized,

Makes the sound pausable.
§

fn stoppable(self) -> Stoppable<Self>
where Self: Sized,

Makes the sound stoppable.
§

fn skippable(self) -> Skippable<Self>
where Self: Sized,

Adds a method Skippable::skip for skipping this source. Skipping makes Source::next() return None. Which in turn makes the Sink skip to the next source.
§

fn track_position(self) -> TrackPosition<Self>
where Self: Sized,

Start tracking the elapsed duration since the start of the underlying source. Read more
§

fn low_pass(self, freq: u32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a low-pass filter to the source. Warning: Probably buggy.
§

fn high_pass(self, freq: u32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a high-pass filter to the source.
§

fn low_pass_with_q(self, freq: u32, q: f32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a low-pass filter to the source while allowing the q (bandwidth) to be changed.
§

fn high_pass_with_q(self, freq: u32, q: f32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a high-pass filter to the source while allowing the q (bandwidth) to be changed.
§

impl<S> Source for Box<dyn Source<Item = S> + Send>
where S: Sample,

§

fn current_frame_len(&self) -> Option<usize>

Returns the number of samples before the current frame ends. None means “infinite” or “until the sound ends”. Should never return 0 unless there’s no more data. Read more
§

fn channels(&self) -> u16

Returns the number of channels. Channels are always interleaved.
§

fn sample_rate(&self) -> u32

Returns the rate at which the source should be played. In number of samples per second.
§

fn total_duration(&self) -> Option<Duration>

Returns the total duration of this source, if known. Read more
§

fn try_seek(&mut self, pos: Duration) -> Result<(), SeekError>

Attempts to seek to a given position in the current source. Read more
§

fn buffered(self) -> Buffered<Self>
where Self: Sized,

Stores the source in a buffer in addition to returning it. This iterator can be cloned.
§

fn mix<S>(self, other: S) -> Mix<Self, S>
where Self: Sized, Self::Item: FromSample<<S as Iterator>::Item>, S: Source, <S as Iterator>::Item: Sample,

Mixes this source with another one.
§

fn repeat_infinite(self) -> Repeat<Self>
where Self: Sized,

Repeats this source forever. Read more
§

fn take_duration(self, duration: Duration) -> TakeDuration<Self>
where Self: Sized,

Takes a certain duration of this source and then stops.
§

fn delay(self, duration: Duration) -> Delay<Self>
where Self: Sized,

Delays the sound by a certain duration. Read more
§

fn skip_duration(self, duration: Duration) -> SkipDuration<Self>
where Self: Sized,

Immediately skips a certain duration of this source. Read more
§

fn amplify(self, value: f32) -> Amplify<Self>
where Self: Sized,

Amplifies the sound by the given value.
§

fn automatic_gain_control( self, target_level: f32, attack_time: f32, release_time: f32, absolute_max_gain: f32, ) -> AutomaticGainControl<Self>
where Self: Sized,

Applies automatic gain control to the sound. Read more
§

fn take_crossfade_with<S>( self, other: S, duration: Duration, ) -> Mix<TakeDuration<Self>, FadeIn<TakeDuration<S>>>
where S: Source, Self: Sized, Self::Item: FromSample<<S as Iterator>::Item>, <S as Iterator>::Item: Sample,

Mixes this sound fading out with another sound fading in for the given duration. Read more
§

fn fade_in(self, duration: Duration) -> FadeIn<Self>
where Self: Sized,

Fades in the sound.
§

fn fade_out(self, duration: Duration) -> FadeOut<Self>
where Self: Sized,

Fades out the sound.
§

fn linear_gain_ramp( self, duration: Duration, start_value: f32, end_value: f32, clamp_end: bool, ) -> LinearGainRamp<Self>
where Self: Sized,

Applies a linear gain ramp to the sound. Read more
§

fn periodic_access<F>( self, period: Duration, access: F, ) -> PeriodicAccess<Self, F>
where Self: Sized, F: FnMut(&mut Self),

Calls the access closure on Self the first time the source is iterated and every time period elapses. Read more
§

fn speed(self, ratio: f32) -> Speed<Self>
where Self: Sized,

Changes the play speed of the sound. Does not adjust the samples, only the playback speed. Read more
§

fn reverb( self, duration: Duration, amplitude: f32, ) -> Mix<Self, Delay<Amplify<Self>>>
where Self: Sized + Clone,

Adds a basic reverb effect. Read more
§

fn convert_samples<D>(self) -> SamplesConverter<Self, D>
where Self: Sized, D: Sample,

Converts the samples of this source to another type.
§

fn pausable(self, initially_paused: bool) -> Pausable<Self>
where Self: Sized,

Makes the sound pausable.
§

fn stoppable(self) -> Stoppable<Self>
where Self: Sized,

Makes the sound stoppable.
§

fn skippable(self) -> Skippable<Self>
where Self: Sized,

Adds a method Skippable::skip for skipping this source. Skipping makes Source::next() return None. Which in turn makes the Sink skip to the next source.
§

fn track_position(self) -> TrackPosition<Self>
where Self: Sized,

Start tracking the elapsed duration since the start of the underlying source. Read more
§

fn low_pass(self, freq: u32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a low-pass filter to the source. Warning: Probably buggy.
§

fn high_pass(self, freq: u32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a high-pass filter to the source.
§

fn low_pass_with_q(self, freq: u32, q: f32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a low-pass filter to the source while allowing the q (bandwidth) to be changed.
§

fn high_pass_with_q(self, freq: u32, q: f32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a high-pass filter to the source while allowing the q (bandwidth) to be changed.
§

impl<S> Source for Box<dyn Source<Item = S> + Send + Sync>
where S: Sample,

§

fn current_frame_len(&self) -> Option<usize>

Returns the number of samples before the current frame ends. None means “infinite” or “until the sound ends”. Should never return 0 unless there’s no more data. Read more
§

fn channels(&self) -> u16

Returns the number of channels. Channels are always interleaved.
§

fn sample_rate(&self) -> u32

Returns the rate at which the source should be played. In number of samples per second.
§

fn total_duration(&self) -> Option<Duration>

Returns the total duration of this source, if known. Read more
§

fn try_seek(&mut self, pos: Duration) -> Result<(), SeekError>

Attempts to seek to a given position in the current source. Read more
§

fn buffered(self) -> Buffered<Self>
where Self: Sized,

Stores the source in a buffer in addition to returning it. This iterator can be cloned.
§

fn mix<S>(self, other: S) -> Mix<Self, S>
where Self: Sized, Self::Item: FromSample<<S as Iterator>::Item>, S: Source, <S as Iterator>::Item: Sample,

Mixes this source with another one.
§

fn repeat_infinite(self) -> Repeat<Self>
where Self: Sized,

Repeats this source forever. Read more
§

fn take_duration(self, duration: Duration) -> TakeDuration<Self>
where Self: Sized,

Takes a certain duration of this source and then stops.
§

fn delay(self, duration: Duration) -> Delay<Self>
where Self: Sized,

Delays the sound by a certain duration. Read more
§

fn skip_duration(self, duration: Duration) -> SkipDuration<Self>
where Self: Sized,

Immediately skips a certain duration of this source. Read more
§

fn amplify(self, value: f32) -> Amplify<Self>
where Self: Sized,

Amplifies the sound by the given value.
§

fn automatic_gain_control( self, target_level: f32, attack_time: f32, release_time: f32, absolute_max_gain: f32, ) -> AutomaticGainControl<Self>
where Self: Sized,

Applies automatic gain control to the sound. Read more
§

fn take_crossfade_with<S>( self, other: S, duration: Duration, ) -> Mix<TakeDuration<Self>, FadeIn<TakeDuration<S>>>
where S: Source, Self: Sized, Self::Item: FromSample<<S as Iterator>::Item>, <S as Iterator>::Item: Sample,

Mixes this sound fading out with another sound fading in for the given duration. Read more
§

fn fade_in(self, duration: Duration) -> FadeIn<Self>
where Self: Sized,

Fades in the sound.
§

fn fade_out(self, duration: Duration) -> FadeOut<Self>
where Self: Sized,

Fades out the sound.
§

fn linear_gain_ramp( self, duration: Duration, start_value: f32, end_value: f32, clamp_end: bool, ) -> LinearGainRamp<Self>
where Self: Sized,

Applies a linear gain ramp to the sound. Read more
§

fn periodic_access<F>( self, period: Duration, access: F, ) -> PeriodicAccess<Self, F>
where Self: Sized, F: FnMut(&mut Self),

Calls the access closure on Self the first time the source is iterated and every time period elapses. Read more
§

fn speed(self, ratio: f32) -> Speed<Self>
where Self: Sized,

Changes the play speed of the sound. Does not adjust the samples, only the playback speed. Read more
§

fn reverb( self, duration: Duration, amplitude: f32, ) -> Mix<Self, Delay<Amplify<Self>>>
where Self: Sized + Clone,

Adds a basic reverb effect. Read more
§

fn convert_samples<D>(self) -> SamplesConverter<Self, D>
where Self: Sized, D: Sample,

Converts the samples of this source to another type.
§

fn pausable(self, initially_paused: bool) -> Pausable<Self>
where Self: Sized,

Makes the sound pausable.
§

fn stoppable(self) -> Stoppable<Self>
where Self: Sized,

Makes the sound stoppable.
§

fn skippable(self) -> Skippable<Self>
where Self: Sized,

Adds a method Skippable::skip for skipping this source. Skipping makes Source::next() return None. Which in turn makes the Sink skip to the next source.
§

fn track_position(self) -> TrackPosition<Self>
where Self: Sized,

Start tracking the elapsed duration since the start of the underlying source. Read more
§

fn low_pass(self, freq: u32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a low-pass filter to the source. Warning: Probably buggy.
§

fn high_pass(self, freq: u32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a high-pass filter to the source.
§

fn low_pass_with_q(self, freq: u32, q: f32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a low-pass filter to the source while allowing the q (bandwidth) to be changed.
§

fn high_pass_with_q(self, freq: u32, q: f32) -> BltFilter<Self>
where Self: Sized + Source<Item = f32>,

Applies a high-pass filter to the source while allowing the q (bandwidth) to be changed.
§

impl<S> Subscriber for Box<S>
where S: Subscriber + ?Sized,

§

fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest

Registers a new callsite with this subscriber, returning whether or not the subscriber is interested in being notified about the callsite. Read more
§

fn enabled(&self, metadata: &Metadata<'_>) -> bool

Returns true if a span or event with the specified metadata would be recorded. Read more
§

fn max_level_hint(&self) -> Option<LevelFilter>

Returns the highest verbosity level that this Subscriber will enable, or None, if the subscriber does not implement level-based filtering or chooses not to implement this method. Read more
§

fn new_span(&self, span: &Attributes<'_>) -> Id

Visit the construction of a new span, returning a new span ID for the span being constructed. Read more
§

fn record(&self, span: &Id, values: &Record<'_>)

Record a set of values on a span. Read more
§

fn record_follows_from(&self, span: &Id, follows: &Id)

Adds an indication that span follows from the span with the id follows. Read more
§

fn event_enabled(&self, event: &Event<'_>) -> bool

Determine if an Event should be recorded. Read more
§

fn event(&self, event: &Event<'_>)

Records that an Event has occurred. Read more
§

fn enter(&self, span: &Id)

Records that a span has been entered. Read more
§

fn exit(&self, span: &Id)

Records that a span has been exited. Read more
§

fn clone_span(&self, id: &Id) -> Id

Notifies the subscriber that a span ID has been cloned. Read more
§

fn try_close(&self, id: Id) -> bool

Notifies the subscriber that a span ID has been dropped, and returns true if there are now 0 IDs that refer to that span. Read more
§

fn drop_span(&self, id: Id)

👎Deprecated since 0.1.2: use Subscriber::try_close instead
This method is deprecated. Read more
§

fn current_span(&self) -> Current

Returns a type representing this subscriber’s view of the current span. Read more
§

unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()>

If self is the same type as the provided TypeId, returns an untyped *const pointer to that type. Otherwise, returns None. Read more
§

fn on_register_dispatch(&self, subscriber: &Dispatch)

Invoked when this subscriber becomes a Dispatch. Read more
1.43.0 · Source§

impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]>

Source§

fn try_from( boxed_slice: Box<[T]>, ) -> Result<Box<[T; N]>, <Box<[T; N]> as TryFrom<Box<[T]>>>::Error>

Attempts to convert a Box<[T]> into a Box<[T; N]>.

The conversion occurs in-place and does not require a new memory allocation.

§Errors

Returns the old Box<[T]> in the Err variant if boxed_slice.len() does not equal N.

Source§

type Error = Box<[T]>

The type returned in the event of a conversion error.
1.66.0 · Source§

impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]>

Source§

fn try_from( vec: Vec<T>, ) -> Result<Box<[T; N]>, <Box<[T; N]> as TryFrom<Vec<T>>>::Error>

Attempts to convert a Vec<T> into a Box<[T; N]>.

Like Vec::into_boxed_slice, this is in-place if vec.capacity() == N, but will require a reallocation otherwise.

§Errors

Returns the original Vec<T> in the Err variant if boxed_slice.len() does not equal N.

§Examples

This can be used with vec! to create an array on the heap:

let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
assert_eq!(state.len(), 100);
Source§

type Error = Vec<T>

The type returned in the event of a conversion error.
Source§

impl<T: Num + 'static, const D: usize> TryInto<Box<dyn NumVector<Rhs = Vector<T, D>, Out = Vector<T, D>, Scalar = T, Inner = [T; D]>>> for Vector<T, D>

Available on crate feature alg only.
Source§

type Error = NumError

The type returned in the event of a conversion error.
Source§

fn try_into( self, ) -> Result<Box<dyn NumVector<Scalar = T, Rhs = Self, Inner = [T; D], Out = Self>>>

Performs the conversion.
§

impl<T> Value for Box<T>
where T: Value + ?Sized,

§

fn record(&self, key: &Field, visitor: &mut dyn Visit)

Visits this value with the given Visitor.
1.0.0 · Source§

impl<W> Write for Box<W>
where W: Write + ?Sized,

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
Source§

impl<T, U, A> CoerceUnsized<Box<U, A>> for Box<T, A>
where T: Unsize<U> + ?Sized, A: Allocator, U: ?Sized,

Source§

impl<R> CryptoRng for Box<R>
where R: CryptoRng + ?Sized,

Source§

impl<T, A> DerefPure for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

impl<T, U> DispatchFromDyn<Box<U>> for Box<T>
where T: Unsize<U> + ?Sized, U: ?Sized,

1.0.0 · Source§

impl<T, A> Eq for Box<T, A>
where T: Eq + ?Sized, A: Allocator,

1.26.0 · Source§

impl<I, A> FusedIterator for Box<I, A>
where I: FusedIterator + ?Sized, A: Allocator,

1.80.0 · Source§

impl<'a, I, A> !Iterator for &'a Box<[I], A>
where A: Allocator,

This implementation is required to make sure that the &Box<[I]>: IntoIterator implementation doesn’t overlap with IntoIterator for T where T: Iterator blanket.

1.80.0 · Source§

impl<'a, I, A> !Iterator for &'a mut Box<[I], A>
where A: Allocator,

This implementation is required to make sure that the &mut Box<[I]>: IntoIterator implementation doesn’t overlap with IntoIterator for T where T: Iterator blanket.

1.80.0 · Source§

impl<I, A> !Iterator for Box<[I], A>
where A: Allocator,

This implementation is required to make sure that the Box<[I]>: IntoIterator implementation doesn’t overlap with IntoIterator for T where T: Iterator blanket.

Source§

impl<T, A> PinCoerceUnsized for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

impl<T> PointerLike for Box<T>

1.33.0 · Source§

impl<T, A> Unpin for Box<T, A>
where A: Allocator, T: ?Sized,

§

impl<T> ZeroableInOption for Box<T>
where T: ?Sized,

Auto Trait Implementations§

§

impl<T, A> Freeze for Box<T, A>
where A: Freeze, T: ?Sized,

§

impl<T, A> RefUnwindSafe for Box<T, A>

§

impl<T, A> Send for Box<T, A>
where A: Send, T: Send + ?Sized,

§

impl<T, A> Sync for Box<T, A>
where A: Sync, T: Sync + ?Sized,

§

impl<T, A> UnwindSafe for Box<T, A>
where A: UnwindSafe, T: UnwindSafe + ?Sized,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> ArchivePointee for T

§

type ArchivedMetadata = ()

The archived version of the pointer metadata for this type.
§

fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata

Converts some archived metadata to the pointer metadata for itself.
§

impl<T> ArchiveUnsized for T
where T: Archive,

§

type Archived = <T as Archive>::Archived

The archived counterpart of this type. Unlike Archive, it may be unsized. Read more
§

fn archived_metadata( &self, ) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata

Creates the archived version of the metadata for this value.
§

impl<R> AsyncBufReadExt for R
where R: AsyncBufRead + ?Sized,

§

fn read_until<'a>( &'a mut self, byte: u8, buf: &'a mut Vec<u8>, ) -> ReadUntil<'a, Self>
where Self: Unpin,

Reads all bytes into buf until the delimiter byte or EOF is reached. Read more
§

fn read_line<'a>(&'a mut self, buf: &'a mut String) -> ReadLine<'a, Self>
where Self: Unpin,

Reads all bytes until a newline (the 0xA byte) is reached, and append them to the provided buffer. Read more
§

fn split(self, byte: u8) -> Split<Self>
where Self: Sized + Unpin,

Returns a stream of the contents of this reader split on the byte byte. Read more
§

fn fill_buf(&mut self) -> FillBuf<'_, Self>
where Self: Unpin,

Returns the contents of the internal buffer, filling it with more data from the inner reader if it is empty. Read more
§

fn consume(&mut self, amt: usize)
where Self: Unpin,

Tells this buffer that amt bytes have been consumed from the buffer, so they should no longer be returned in calls to read. Read more
§

fn lines(self) -> Lines<Self>
where Self: Sized,

Returns a stream over the lines of this reader. This method is the async equivalent to BufRead::lines. Read more
§

impl<R> AsyncReadExt for R
where R: AsyncRead + ?Sized,

§

fn chain<R>(self, next: R) -> Chain<Self, R>
where Self: Sized, R: AsyncRead,

Creates a new AsyncRead instance that chains this stream with next. Read more
§

fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Read<'a, Self>
where Self: Unpin,

Pulls some bytes from this source into the specified buffer, returning how many bytes were read. Read more
§

fn read_buf<'a, B>(&'a mut self, buf: &'a mut B) -> ReadBuf<'a, Self, B>
where Self: Unpin, B: BufMut + ?Sized,

Pulls some bytes from this source into the specified buffer, advancing the buffer’s internal cursor. Read more
§

fn read_exact<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadExact<'a, Self>
where Self: Unpin,

Reads the exact number of bytes required to fill buf. Read more
§

fn read_u8(&mut self) -> ReadU8<&mut Self>
where Self: Unpin,

Reads an unsigned 8 bit integer from the underlying reader. Read more
§

fn read_i8(&mut self) -> ReadI8<&mut Self>
where Self: Unpin,

Reads a signed 8 bit integer from the underlying reader. Read more
§

fn read_u16(&mut self) -> ReadU16<&mut Self>
where Self: Unpin,

Reads an unsigned 16-bit integer in big-endian order from the underlying reader. Read more
§

fn read_i16(&mut self) -> ReadI16<&mut Self>
where Self: Unpin,

Reads a signed 16-bit integer in big-endian order from the underlying reader. Read more
§

fn read_u32(&mut self) -> ReadU32<&mut Self>
where Self: Unpin,

Reads an unsigned 32-bit integer in big-endian order from the underlying reader. Read more
§

fn read_i32(&mut self) -> ReadI32<&mut Self>
where Self: Unpin,

Reads a signed 32-bit integer in big-endian order from the underlying reader. Read more
§

fn read_u64(&mut self) -> ReadU64<&mut Self>
where Self: Unpin,

Reads an unsigned 64-bit integer in big-endian order from the underlying reader. Read more
§

fn read_i64(&mut self) -> ReadI64<&mut Self>
where Self: Unpin,

Reads an signed 64-bit integer in big-endian order from the underlying reader. Read more
§

fn read_u128(&mut self) -> ReadU128<&mut Self>
where Self: Unpin,

Reads an unsigned 128-bit integer in big-endian order from the underlying reader. Read more
§

fn read_i128(&mut self) -> ReadI128<&mut Self>
where Self: Unpin,

Reads an signed 128-bit integer in big-endian order from the underlying reader. Read more
§

fn read_f32(&mut self) -> ReadF32<&mut Self>
where Self: Unpin,

Reads an 32-bit floating point type in big-endian order from the underlying reader. Read more
§

fn read_f64(&mut self) -> ReadF64<&mut Self>
where Self: Unpin,

Reads an 64-bit floating point type in big-endian order from the underlying reader. Read more
§

fn read_u16_le(&mut self) -> ReadU16Le<&mut Self>
where Self: Unpin,

Reads an unsigned 16-bit integer in little-endian order from the underlying reader. Read more
§

fn read_i16_le(&mut self) -> ReadI16Le<&mut Self>
where Self: Unpin,

Reads a signed 16-bit integer in little-endian order from the underlying reader. Read more
§

fn read_u32_le(&mut self) -> ReadU32Le<&mut Self>
where Self: Unpin,

Reads an unsigned 32-bit integer in little-endian order from the underlying reader. Read more
§

fn read_i32_le(&mut self) -> ReadI32Le<&mut Self>
where Self: Unpin,

Reads a signed 32-bit integer in little-endian order from the underlying reader. Read more
§

fn read_u64_le(&mut self) -> ReadU64Le<&mut Self>
where Self: Unpin,

Reads an unsigned 64-bit integer in little-endian order from the underlying reader. Read more
§

fn read_i64_le(&mut self) -> ReadI64Le<&mut Self>
where Self: Unpin,

Reads an signed 64-bit integer in little-endian order from the underlying reader. Read more
§

fn read_u128_le(&mut self) -> ReadU128Le<&mut Self>
where Self: Unpin,

Reads an unsigned 128-bit integer in little-endian order from the underlying reader. Read more
§

fn read_i128_le(&mut self) -> ReadI128Le<&mut Self>
where Self: Unpin,

Reads an signed 128-bit integer in little-endian order from the underlying reader. Read more
§

fn read_f32_le(&mut self) -> ReadF32Le<&mut Self>
where Self: Unpin,

Reads an 32-bit floating point type in little-endian order from the underlying reader. Read more
§

fn read_f64_le(&mut self) -> ReadF64Le<&mut Self>
where Self: Unpin,

Reads an 64-bit floating point type in little-endian order from the underlying reader. Read more
§

fn read_to_end<'a>(&'a mut self, buf: &'a mut Vec<u8>) -> ReadToEnd<'a, Self>
where Self: Unpin,

Reads all bytes until EOF in this source, placing them into buf. Read more
§

fn read_to_string<'a>( &'a mut self, dst: &'a mut String, ) -> ReadToString<'a, Self>
where Self: Unpin,

Reads all bytes until EOF in this source, appending them to buf. Read more
§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an adaptor which reads at most limit bytes from it. Read more
§

impl<S> AsyncSeekExt for S
where S: AsyncSeek + ?Sized,

§

fn seek(&mut self, pos: SeekFrom) -> Seek<'_, Self>
where Self: Unpin,

Creates a future which will seek an IO object, and then yield the new position in the object and the object itself. Read more
§

fn rewind(&mut self) -> Seek<'_, Self>
where Self: Unpin,

Creates a future which will rewind to the beginning of the stream. Read more
§

fn stream_position(&mut self) -> Seek<'_, Self>
where Self: Unpin,

Creates a future which will return the current seek position from the start of the stream. Read more
§

impl<W> AsyncWriteExt for W
where W: AsyncWrite + ?Sized,

§

fn write<'a>(&'a mut self, src: &'a [u8]) -> Write<'a, Self>
where Self: Unpin,

Writes a buffer into this writer, returning how many bytes were written. Read more
§

fn write_vectored<'a, 'b>( &'a mut self, bufs: &'a [IoSlice<'b>], ) -> WriteVectored<'a, 'b, Self>
where Self: Unpin,

Like write, except that it writes from a slice of buffers. Read more
§

fn write_buf<'a, B>(&'a mut self, src: &'a mut B) -> WriteBuf<'a, Self, B>
where Self: Sized + Unpin, B: Buf,

Writes a buffer into this writer, advancing the buffer’s internal cursor. Read more
§

fn write_all_buf<'a, B>( &'a mut self, src: &'a mut B, ) -> WriteAllBuf<'a, Self, B>
where Self: Sized + Unpin, B: Buf,

Attempts to write an entire buffer into this writer. Read more
§

fn write_all<'a>(&'a mut self, src: &'a [u8]) -> WriteAll<'a, Self>
where Self: Unpin,

Attempts to write an entire buffer into this writer. Read more
§

fn write_u8(&mut self, n: u8) -> WriteU8<&mut Self>
where Self: Unpin,

Writes an unsigned 8-bit integer to the underlying writer. Read more
§

fn write_i8(&mut self, n: i8) -> WriteI8<&mut Self>
where Self: Unpin,

Writes a signed 8-bit integer to the underlying writer. Read more
§

fn write_u16(&mut self, n: u16) -> WriteU16<&mut Self>
where Self: Unpin,

Writes an unsigned 16-bit integer in big-endian order to the underlying writer. Read more
§

fn write_i16(&mut self, n: i16) -> WriteI16<&mut Self>
where Self: Unpin,

Writes a signed 16-bit integer in big-endian order to the underlying writer. Read more
§

fn write_u32(&mut self, n: u32) -> WriteU32<&mut Self>
where Self: Unpin,

Writes an unsigned 32-bit integer in big-endian order to the underlying writer. Read more
§

fn write_i32(&mut self, n: i32) -> WriteI32<&mut Self>
where Self: Unpin,

Writes a signed 32-bit integer in big-endian order to the underlying writer. Read more
§

fn write_u64(&mut self, n: u64) -> WriteU64<&mut Self>
where Self: Unpin,

Writes an unsigned 64-bit integer in big-endian order to the underlying writer. Read more
§

fn write_i64(&mut self, n: i64) -> WriteI64<&mut Self>
where Self: Unpin,

Writes an signed 64-bit integer in big-endian order to the underlying writer. Read more
§

fn write_u128(&mut self, n: u128) -> WriteU128<&mut Self>
where Self: Unpin,

Writes an unsigned 128-bit integer in big-endian order to the underlying writer. Read more
§

fn write_i128(&mut self, n: i128) -> WriteI128<&mut Self>
where Self: Unpin,

Writes an signed 128-bit integer in big-endian order to the underlying writer. Read more
§

fn write_f32(&mut self, n: f32) -> WriteF32<&mut Self>
where Self: Unpin,

Writes an 32-bit floating point type in big-endian order to the underlying writer. Read more
§

fn write_f64(&mut self, n: f64) -> WriteF64<&mut Self>
where Self: Unpin,

Writes an 64-bit floating point type in big-endian order to the underlying writer. Read more
§

fn write_u16_le(&mut self, n: u16) -> WriteU16Le<&mut Self>
where Self: Unpin,

Writes an unsigned 16-bit integer in little-endian order to the underlying writer. Read more
§

fn write_i16_le(&mut self, n: i16) -> WriteI16Le<&mut Self>
where Self: Unpin,

Writes a signed 16-bit integer in little-endian order to the underlying writer. Read more
§

fn write_u32_le(&mut self, n: u32) -> WriteU32Le<&mut Self>
where Self: Unpin,

Writes an unsigned 32-bit integer in little-endian order to the underlying writer. Read more
§

fn write_i32_le(&mut self, n: i32) -> WriteI32Le<&mut Self>
where Self: Unpin,

Writes a signed 32-bit integer in little-endian order to the underlying writer. Read more
§

fn write_u64_le(&mut self, n: u64) -> WriteU64Le<&mut Self>
where Self: Unpin,

Writes an unsigned 64-bit integer in little-endian order to the underlying writer. Read more
§

fn write_i64_le(&mut self, n: i64) -> WriteI64Le<&mut Self>
where Self: Unpin,

Writes an signed 64-bit integer in little-endian order to the underlying writer. Read more
§

fn write_u128_le(&mut self, n: u128) -> WriteU128Le<&mut Self>
where Self: Unpin,

Writes an unsigned 128-bit integer in little-endian order to the underlying writer. Read more
§

fn write_i128_le(&mut self, n: i128) -> WriteI128Le<&mut Self>
where Self: Unpin,

Writes an signed 128-bit integer in little-endian order to the underlying writer. Read more
§

fn write_f32_le(&mut self, n: f32) -> WriteF32Le<&mut Self>
where Self: Unpin,

Writes an 32-bit floating point type in little-endian order to the underlying writer. Read more
§

fn write_f64_le(&mut self, n: f64) -> WriteF64Le<&mut Self>
where Self: Unpin,

Writes an 64-bit floating point type in little-endian order to the underlying writer. Read more
§

fn flush(&mut self) -> Flush<'_, Self>
where Self: Unpin,

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
§

fn shutdown(&mut self) -> Shutdown<'_, Self>
where Self: Unpin,

Shuts down the output stream, ensuring that the value can be dropped cleanly. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> ByteSized for T

Source§

const BYTE_ALIGN: usize = _

The alignment of this type in bytes.
Source§

const BYTE_SIZE: usize = _

The size of this type in bytes.
Source§

fn byte_align(&self) -> usize

Returns the alignment of this type in bytes.
Source§

fn byte_size(&self) -> usize

Returns the size of this type in bytes. Read more
Source§

fn ptr_size_ratio(&self) -> [usize; 2]

Returns the size ratio between Ptr::BYTES and BYTE_SIZE. Read more
Source§

impl<T, R> Chain<R> for T
where T: ?Sized,

Source§

fn chain<F>(self, f: F) -> R
where F: FnOnce(Self) -> R, Self: Sized,

Chain a function which takes the parameter by value.
Source§

fn chain_ref<F>(&self, f: F) -> R
where F: FnOnce(&Self) -> R,

Chain a function which takes the parameter by shared reference.
Source§

fn chain_mut<F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self) -> R,

Chain a function which takes the parameter by exclusive reference.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<I> CollectIn for I
where I: Iterator,

§

fn collect_in<C>(self, alloc: <C as FromIteratorIn<Self::Item>>::Alloc) -> C
where C: FromIteratorIn<Self::Item>,

Collect all items from an iterator, into a collection parameterized by an allocator. Similar to Iterator::collect. Read more
§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
§

impl<C, F> ContainsToken<C> for F
where F: Fn(C) -> bool,

§

fn contains_token(&self, token: C) -> bool

Returns true if self contains the token
§

impl<F> CpuIdReader for F
where F: Fn(u32, u32) -> CpuIdResult + Clone,

§

fn cpuid2(&self, eax: u32, ecx: u32) -> CpuIdResult

§

fn cpuid1(&self, eax: u32) -> CpuIdResult

Source§

impl<T> CryptoRngCore for T
where T: CryptoRng + RngCore,

Source§

fn as_rngcore(&mut self) -> &mut dyn RngCore

Upcast to an RngCore trait object.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<T> ExecutableCommand for T
where T: Write + ?Sized,

§

fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

§Arguments
  • Command

    The command that you want to execute directly.

§Example
use std::io;
use crossterm::{ExecutableCommand, style::Print};

fn main() -> io::Result<()> {
     // will be executed directly
      io::stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§

impl<T> ExtAny for T
where T: Any + ?Sized,

Source§

fn type_id() -> TypeId

Returns the TypeId of Self. Read more
Source§

fn type_of(&self) -> TypeId

Returns the TypeId of self. Read more
Source§

fn type_name(&self) -> &'static str

Returns the type name of self. Read more
Source§

fn type_is<T: 'static>(&self) -> bool

Returns true if Self is of type T. Read more
Source§

fn as_any_ref(&self) -> &dyn Any
where Self: Sized,

Upcasts &self as &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any
where Self: Sized,

Upcasts &mut self as &mut dyn Any. Read more
Source§

fn as_any_box(self: Box<Self>) -> Box<dyn Any>
where Self: Sized,

Upcasts Box<self> as Box<dyn Any>. Read more
Source§

fn downcast_ref<T: 'static>(&self) -> Option<&T>

Available on crate feature unsafe_layout only.
Returns some shared reference to the inner value if it is of type T. Read more
Source§

fn downcast_mut<T: 'static>(&mut self) -> Option<&mut T>

Available on crate feature unsafe_layout only.
Returns some exclusive reference to the inner value if it is of type T. Read more
Source§

impl<F> ExtFuture for F
where F: Future,

Source§

fn block_on(self) -> Self::Output
where Self: Sized,

Available on crate feature std only.
Blocks the thread until the future is ready. Read more
Source§

impl<T> ExtMem for T
where T: ?Sized,

Source§

const NEEDS_DROP: bool = _

Know whether dropping values of this type matters, in compile-time.
Source§

fn mem_align_of<T>() -> usize

Returns the minimum alignment of the type in bytes. Read more
Source§

fn mem_align_of_val(&self) -> usize

Returns the alignment of the pointed-to value in bytes. Read more
Source§

fn mem_size_of<T>() -> usize

Returns the size of a type in bytes. Read more
Source§

fn mem_size_of_val(&self) -> usize

Returns the size of the pointed-to value in bytes. Read more
Source§

fn mem_copy(&self) -> Self
where Self: Copy,

Bitwise-copies a value. Read more
Source§

fn mem_needs_drop(&self) -> bool

Returns true if dropping values of this type matters. Read more
Source§

fn mem_drop(self)
where Self: Sized,

Drops self by running its destructor. Read more
Source§

fn mem_forget(self)
where Self: Sized,

Forgets about self without running its destructor. Read more
Source§

fn mem_replace(&mut self, other: Self) -> Self
where Self: Sized,

Replaces self with other, returning the previous value of self. Read more
Source§

fn mem_take(&mut self) -> Self
where Self: Default,

Replaces self with its default value, returning the previous value of self. Read more
Source§

fn mem_swap(&mut self, other: &mut Self)
where Self: Sized,

Swaps the value of self and other without deinitializing either one. Read more
Source§

unsafe fn mem_zeroed<T>() -> T

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

fn mem_as_bytes(&self) -> &[u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &[u8]. Read more
Source§

fn mem_as_bytes_mut(&mut self) -> &mut [u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &mut [u8]. Read more
Source§

impl<T> From<!> for T

Source§

fn from(t: !) -> T

Converts to this type from the input type.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

Source§

impl<T> Hook for T

Source§

fn hook_ref<F>(self, f: F) -> Self
where F: FnOnce(&Self),

Applies a function which takes the parameter by shared reference, and then returns the (possibly) modified owned value. Read more
Source§

fn hook_mut<F>(self, f: F) -> Self
where F: FnOnce(&mut Self),

Applies a function which takes the parameter by exclusive reference, and then returns the (possibly) modified owned value. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<I> IntoAsyncIterator for I
where I: AsyncIterator,

Source§

type Item = <I as AsyncIterator>::Item

🔬This is a nightly-only experimental API. (async_iterator)
The type of the item yielded by the iterator
Source§

type IntoAsyncIter = I

🔬This is a nightly-only experimental API. (async_iterator)
The type of the resulting iterator
Source§

fn into_async_iter(self) -> <I as IntoAsyncIterator>::IntoAsyncIter

🔬This is a nightly-only experimental API. (async_iterator)
Converts self into an async iterator
Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F> IntoFuture for F
where F: Future,

Source§

type Output = <F as Future>::Output

The output that the future will produce on completion.
Source§

type IntoFuture = F

Which kind of future are we turning this into?
Source§

fn into_future(self) -> <F as IntoFuture>::IntoFuture

Creates a future from a value. Read more
Source§

impl<I> IntoIterator for I
where I: Iterator,

Source§

type Item = <I as Iterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = I

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> I

Creates an iterator from a value. Read more
§

impl<'py, T, I> IntoPyDict<'py> for I
where T: PyDictItem<'py>, I: IntoIterator<Item = T>,

§

fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr>

Converts self into a PyDict object pointer. Whether pointer owned or borrowed depends on implementation.
§

fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>

👎Deprecated since 0.23.0: renamed to IntoPyDict::into_py_dict
Deprecated name for IntoPyDict::into_py_dict.
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<S> IsTty for S
where S: AsRawFd,

§

fn is_tty(&self) -> bool

Returns true when an instance is a terminal teletype, otherwise false.
§

impl<T> LayoutRaw for T

§

fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>

Returns the layout of the type.
§

impl<T, A> MutableStringZilla<A> for T
where T: AsMut<[u8]>, A: AsRef<[u8]>,

§

fn sz_randomize(&mut self, alphabet: A)

Fills the implementing byte slice with random bytes from the specified alphabet. Read more
§

impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
where T: SharedNiching<N1, N2>, N1: Niching<T>, N2: Niching<T>,

§

unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool

Returns whether the given value has been niched. Read more
§

fn resolve_niched(out: Place<NichedOption<T, N1>>)

Writes data to out indicating that a T is niched.
§

impl<I, O, E, F> Parser<I, O, E> for F
where F: FnMut(&mut I) -> Result<O, ErrMode<E>>, I: Stream,

§

fn parse_next(&mut self, i: &mut I) -> Result<O, ErrMode<E>>

Take tokens from the Stream, turning it into the output Read more
§

fn parse(&mut self, input: I) -> Result<O, ParseError<I, E>>
where Self: Sized, I: Stream + StreamIsPartial, E: ParserError<I>,

Parse all of input, generating O from it
§

fn parse_peek(&mut self, input: I) -> Result<(I, O), ErrMode<E>>

Take tokens from the Stream, turning it into the output Read more
§

fn by_ref(&mut self) -> ByRef<'_, Self>
where Self: Sized,

Treat &mut Self as a parser Read more
§

fn value<O2>(self, val: O2) -> Value<Self, I, O, O2, E>
where Self: Sized, O2: Clone,

Produce the provided value Read more
§

fn default_value<O2>(self) -> DefaultValue<Self, I, O, O2, E>
where Self: Sized, O2: Default,

Produce a type’s default value Read more
§

fn void(self) -> Void<Self, I, O, E>
where Self: Sized,

Discards the output of the Parser Read more
§

fn output_into<O2>(self) -> OutputInto<Self, I, O, O2, E>
where Self: Sized, O: Into<O2>,

Convert the parser’s output to another type using std::convert::From Read more
§

fn take(self) -> Take<Self, I, O, E>
where Self: Sized, I: Stream,

Produce the consumed input as produced value. Read more
§

fn recognize(self) -> Take<Self, I, O, E>
where Self: Sized, I: Stream,

👎Deprecated since 0.6.14: Replaced with Parser::take
Replaced with Parser::take
§

fn with_taken(self) -> WithTaken<Self, I, O, E>
where Self: Sized, I: Stream,

Produce the consumed input with the output Read more
§

fn with_recognized(self) -> WithTaken<Self, I, O, E>
where Self: Sized, I: Stream,

👎Deprecated since 0.6.14: Replaced with Parser::with_taken
Replaced with Parser::with_taken
§

fn span(self) -> Span<Self, I, O, E>
where Self: Sized, I: Stream + Location,

Produce the location of the consumed input as produced value. Read more
§

fn with_span(self) -> WithSpan<Self, I, O, E>
where Self: Sized, I: Stream + Location,

Produce the location of consumed input with the output Read more
§

fn map<G, O2>(self, map: G) -> Map<Self, G, I, O, O2, E>
where G: FnMut(O) -> O2, Self: Sized,

Maps a function over the output of a parser Read more
§

fn try_map<G, O2, E2>(self, map: G) -> TryMap<Self, G, I, O, O2, E, E2>
where Self: Sized, G: FnMut(O) -> Result<O2, E2>, I: Stream, E: FromExternalError<I, E2>,

Applies a function returning a Result over the output of a parser. Read more
§

fn verify_map<G, O2>(self, map: G) -> VerifyMap<Self, G, I, O, O2, E>
where Self: Sized, G: FnMut(O) -> Option<O2>, I: Stream, E: ParserError<I>,

§

fn flat_map<G, H, O2>(self, map: G) -> FlatMap<Self, G, H, I, O, O2, E>
where Self: Sized, G: FnMut(O) -> H, H: Parser<I, O2, E>,

Creates a parser from the output of this one Read more
§

fn and_then<G, O2>(self, inner: G) -> AndThen<Self, G, I, O, O2, E>
where Self: Sized, G: Parser<O, O2, E>, O: StreamIsPartial, I: Stream,

Applies a second parser over the output of the first one Read more
§

fn parse_to<O2>(self) -> ParseTo<Self, I, O, O2, E>
where Self: Sized, I: Stream, O: ParseSlice<O2>, E: ParserError<I>,

Apply std::str::FromStr to the output of the parser Read more
§

fn verify<G, O2>(self, filter: G) -> Verify<Self, G, I, O, O2, E>
where Self: Sized, G: FnMut(&O2) -> bool, I: Stream, O: Borrow<O2>, E: ParserError<I>, O2: ?Sized,

Returns the output of the child parser if it satisfies a verification function. Read more
§

fn context<C>(self, context: C) -> Context<Self, I, O, E, C>
where Self: Sized, I: Stream, E: AddContext<I, C>, C: Clone + Debug,

If parsing fails, add context to the error Read more
§

fn complete_err(self) -> CompleteErr<Self>
where Self: Sized,

§

fn err_into<E2>(self) -> ErrInto<Self, I, O, E, E2>
where Self: Sized, E: Into<E2>,

Convert the parser’s error to another type using std::convert::From
Source§

impl<F> Pattern for F
where F: FnMut(char) -> bool,

Source§

type Searcher<'a> = CharPredicateSearcher<'a, F>

🔬This is a nightly-only experimental API. (pattern)
Associated searcher for this pattern
Source§

fn into_searcher<'a>(self, haystack: &'a str) -> CharPredicateSearcher<'a, F>

🔬This is a nightly-only experimental API. (pattern)
Constructs the associated searcher from self and the haystack to search in.
Source§

fn is_contained_in<'a>(self, haystack: &'a str) -> bool

🔬This is a nightly-only experimental API. (pattern)
Checks whether the pattern matches anywhere in the haystack
Source§

fn is_prefix_of<'a>(self, haystack: &'a str) -> bool

🔬This is a nightly-only experimental API. (pattern)
Checks whether the pattern matches at the front of the haystack
Source§

fn strip_prefix_of<'a>(self, haystack: &'a str) -> Option<&'a str>

🔬This is a nightly-only experimental API. (pattern)
Removes the pattern from the front of haystack, if it matches.
Source§

fn is_suffix_of<'a>(self, haystack: &'a str) -> bool

🔬This is a nightly-only experimental API. (pattern)
Checks whether the pattern matches at the back of the haystack
Source§

fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>

🔬This is a nightly-only experimental API. (pattern)
Removes the pattern from the back of haystack, if it matches.
Source§

fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>>

🔬This is a nightly-only experimental API. (pattern)
Returns the pattern as utf-8 bytes if possible.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Metadata = ()

The metadata type for pointers and references to this type.
§

impl<T> QueueableCommand for T
where T: Write + ?Sized,

§

fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
§Arguments
  • Command

    The command that you want to queue for later execution.

§Examples
use std::io::{self, Write};
use crossterm::{QueueableCommand, style::Print};

 fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
§

impl<F, T> Replacer for F
where F: FnMut(&Captures<'_>) -> T, T: AsRef<str>,

§

fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String)

Appends possibly empty data to dst to replace the current match. Read more
§

fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>>

Return a fixed unchanging replacement string. Read more
§

fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self>

Returns a type that implements Replacer, but that borrows and wraps this Replacer. Read more
Source§

impl<T> ReturnWasmAbi for T
where T: IntoWasmAbi,

Source§

type Abi = <T as IntoWasmAbi>::Abi

Same as IntoWasmAbi::Abi
Source§

fn return_abi(self) -> <T as ReturnWasmAbi>::Abi

Same as IntoWasmAbi::into_abi, except that it may throw and never return in the case of Err.
§

impl<T, S> SerializeUnsized<S> for T
where T: Serialize<S>, S: Fallible + Writer + ?Sized,

§

fn serialize_unsized( &self, serializer: &mut S, ) -> Result<usize, <S as Fallible>::Error>

Writes the object and returns the position of the archived type.
§

impl<'a, T, N> StringZilla<'a, N> for T
where T: AsRef<[u8]> + ?Sized, N: AsRef<[u8]> + 'a,

§

fn sz_find(&self, needle: N) -> Option<usize>

Searches for the first occurrence of needle in self. Read more
§

fn sz_rfind(&self, needle: N) -> Option<usize>

Searches for the last occurrence of needle in self. Read more
§

fn sz_find_char_from(&self, needles: N) -> Option<usize>

Finds the index of the first character in self that is also present in needles. Read more
§

fn sz_rfind_char_from(&self, needles: N) -> Option<usize>

Finds the index of the last character in self that is also present in needles. Read more
§

fn sz_find_char_not_from(&self, needles: N) -> Option<usize>

Finds the index of the first character in self that is not present in needles. Read more
§

fn sz_rfind_char_not_from(&self, needles: N) -> Option<usize>

Finds the index of the last character in self that is not present in needles. Read more
§

fn sz_edit_distance(&self, other: N) -> usize

Computes the Levenshtein edit distance between self and other. Read more
§

fn sz_alignment_score( &self, other: N, matrix: [[i8; 256]; 256], gap: i8, ) -> isize

Computes the alignment score between self and other using the specified substitution matrix and gap penalty. Read more
§

fn sz_matches(&'a self, needle: &'a N) -> RangeMatches<'a>

Returns an iterator over all non-overlapping matches of the given needle in self. Read more
§

fn sz_rmatches(&'a self, needle: &'a N) -> RangeRMatches<'a>

Returns an iterator over all non-overlapping matches of the given needle in self, searching from the end. Read more
§

fn sz_splits(&'a self, needle: &'a N) -> RangeSplits<'a>

Returns an iterator over the substrings of self that are separated by the given needle. Read more
§

fn sz_rsplits(&'a self, needle: &'a N) -> RangeRSplits<'a>

Returns an iterator over the substrings of self that are separated by the given needle, searching from the end. Read more
§

fn sz_find_first_of(&'a self, needles: &'a N) -> RangeMatches<'a>

Returns an iterator over all non-overlapping matches of any of the bytes in needles within self. Read more
§

fn sz_find_last_of(&'a self, needles: &'a N) -> RangeRMatches<'a>

Returns an iterator over all non-overlapping matches of any of the bytes in needles within self, searching from the end. Read more
§

fn sz_find_first_not_of(&'a self, needles: &'a N) -> RangeMatches<'a>

Returns an iterator over all non-overlapping matches of any byte not in needles within self. Read more
§

fn sz_find_last_not_of(&'a self, needles: &'a N) -> RangeRMatches<'a>

Returns an iterator over all non-overlapping matches of any byte not in needles within self, searching from the end. Read more
§

impl<W> SynchronizedUpdate for W
where W: Write + ?Sized,

§

fn sync_update<T>( &mut self, operations: impl FnOnce(&mut W) -> T, ) -> Result<T, Error>

Performs a set of actions within a synchronous update.

Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.

§Arguments
  • Function

    A function that performs the operations that must execute in a synchronized update.

§Examples
use std::io;
use crossterm::{ExecutableCommand, SynchronizedUpdate, style::Print};

fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    stdout.sync_update(|stdout| {
        stdout.execute(Print("foo 1\n".to_string()))?;
        stdout.execute(Print("foo 2".to_string()))?;
        // The effects of the print command will not be present in the terminal
        // buffer, but not visible in the terminal.
        std::io::Result::Ok(())
    })?;

    // The effects of the commands will be visible.

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}
§Notes

This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.

When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.

This mode attempts to mitigate that.

When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<F> Visit for F
where F: FnMut(&Field, &dyn Debug),

§

fn record_debug(&mut self, field: &Field, value: &dyn Debug)

Visit a value implementing fmt::Debug.
§

fn record_f64(&mut self, field: &Field, value: f64)

Visit a double-precision floating point value.
§

fn record_i64(&mut self, field: &Field, value: i64)

Visit a signed 64-bit integer value.
§

fn record_u64(&mut self, field: &Field, value: u64)

Visit an unsigned 64-bit integer value.
§

fn record_i128(&mut self, field: &Field, value: i128)

Visit a signed 128-bit integer value.
§

fn record_u128(&mut self, field: &Field, value: u128)

Visit an unsigned 128-bit integer value.
§

fn record_bool(&mut self, field: &Field, value: bool)

Visit a boolean value.
§

fn record_str(&mut self, field: &Field, value: &str)

Visit a string value.
§

fn record_bytes(&mut self, field: &Field, value: &[u8])

Visit a byte slice.
§

fn record_error(&mut self, field: &Field, value: &(dyn Error + 'static))

Records a type implementing Error. Read more
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Ungil for T
where T: Send,