devela::sys::mem

Struct ManuallyDrop

1.20.0 · Source
pub struct ManuallyDrop<T>
where T: ?Sized,
{ /* private fields */ }
Expand description

core A wrapper to inhibit compiler from automatically calling T’s destructor.

Re-exported from core::mem:: .


A wrapper to inhibit the compiler from automatically calling T’s destructor. This wrapper is 0-cost.

ManuallyDrop<T> is guaranteed to have the same layout and bit validity as T, and is subject to the same layout optimizations as T. As a consequence, it has no effect on the assumptions that the compiler makes about its contents. For example, initializing a ManuallyDrop<&mut T> with mem::zeroed is undefined behavior. If you need to handle uninitialized data, use MaybeUninit<T> instead.

Note that accessing the value inside a ManuallyDrop<T> is safe. This means that a ManuallyDrop<T> whose content has been dropped must not be exposed through a public safe API. Correspondingly, ManuallyDrop::drop is unsafe.

§ManuallyDrop and drop order

Rust has a well-defined drop order of values. To make sure that fields or locals are dropped in a specific order, reorder the declarations such that the implicit drop order is the correct one.

It is possible to use ManuallyDrop to control the drop order, but this requires unsafe code and is hard to do correctly in the presence of unwinding.

For example, if you want to make sure that a specific field is dropped after the others, make it the last field of a struct:

struct Context;

struct Widget {
    children: Vec<Widget>,
    // `context` will be dropped after `children`.
    // Rust guarantees that fields are dropped in the order of declaration.
    context: Context,
}

§Interaction with Box

Currently, if you have a ManuallyDrop<T>, where the type T is a Box or contains a Box inside, then dropping the T followed by moving the ManuallyDrop<T> is considered to be undefined behavior. That is, the following code causes undefined behavior:

use std::mem::ManuallyDrop;

let mut x = ManuallyDrop::new(Box::new(42));
unsafe {
    ManuallyDrop::drop(&mut x);
}
let y = x; // Undefined behavior!

This is likely to change in the future. In the meantime, consider using MaybeUninit instead.

§Safety hazards when storing ManuallyDrop in a struct or an enum.

Special care is needed when all of the conditions below are met:

  • A struct or enum contains a ManuallyDrop.
  • The ManuallyDrop is not inside a union.
  • The struct or enum is part of public API, or is stored in a struct or an enum that is part of public API.
  • There is code that drops the contents of the ManuallyDrop field, and this code is outside the struct or enum’s Drop implementation.

In particular, the following hazards may occur:

§Storing generic types

If the ManuallyDrop contains a client-supplied generic type, the client might provide a Box as that type. This would cause undefined behavior when the struct or enum is later moved, as mentioned in the previous section. For example, the following code causes undefined behavior:

use std::mem::ManuallyDrop;

pub struct BadOption<T> {
    // Invariant: Has been dropped iff `is_some` is false.
    value: ManuallyDrop<T>,
    is_some: bool,
}
impl<T> BadOption<T> {
    pub fn new(value: T) -> Self {
        Self { value: ManuallyDrop::new(value), is_some: true }
    }
    pub fn change_to_none(&mut self) {
        if self.is_some {
            self.is_some = false;
            unsafe {
                // SAFETY: `value` hasn't been dropped yet, as per the invariant
                // (This is actually unsound!)
                ManuallyDrop::drop(&mut self.value);
            }
        }
    }
}

// In another crate:

let mut option = BadOption::new(Box::new(42));
option.change_to_none();
let option2 = option; // Undefined behavior!
§Deriving traits

Deriving Debug, Clone, PartialEq, PartialOrd, Ord, or Hash on the struct or enum could be unsound, since the derived implementations of these traits would access the ManuallyDrop field. For example, the following code causes undefined behavior:

use std::mem::ManuallyDrop;

// This derive is unsound in combination with the `ManuallyDrop::drop` call.
#[derive(Debug)]
pub struct Foo {
    value: ManuallyDrop<String>,
}
impl Foo {
    pub fn new() -> Self {
        let mut temp = Self {
            value: ManuallyDrop::new(String::from("Unsafe rust is hard."))
        };
        unsafe {
            // SAFETY: `value` hasn't been dropped yet.
            ManuallyDrop::drop(&mut temp.value);
        }
        temp
    }
}

// In another crate:

let foo = Foo::new();
println!("{:?}", foo); // Undefined behavior!

Implementations§

Source§

impl<T> ManuallyDrop<T>

1.20.0 (const: 1.32.0) · Source

pub const fn new(value: T) -> ManuallyDrop<T>

Wrap a value to be manually dropped.

§Examples
use std::mem::ManuallyDrop;
let mut x = ManuallyDrop::new(String::from("Hello World!"));
x.truncate(5); // You can still safely operate on the value
assert_eq!(*x, "Hello");
// But `Drop` will not be run here
1.20.0 (const: 1.32.0) · Source

pub const fn into_inner(slot: ManuallyDrop<T>) -> T

Extracts the value from the ManuallyDrop container.

This allows the value to be dropped again.

§Examples
use std::mem::ManuallyDrop;
let x = ManuallyDrop::new(Box::new(()));
let _: Box<()> = ManuallyDrop::into_inner(x); // This drops the `Box`.
1.42.0 · Source

pub unsafe fn take(slot: &mut ManuallyDrop<T>) -> T

Takes the value from the ManuallyDrop<T> container out.

This method is primarily intended for moving out values in drop. Instead of using ManuallyDrop::drop to manually drop the value, you can use this method to take the value and use it however desired.

Whenever possible, it is preferable to use into_inner instead, which prevents duplicating the content of the ManuallyDrop<T>.

§Safety

This function semantically moves out the contained value without preventing further usage, leaving the state of this container unchanged. It is your responsibility to ensure that this ManuallyDrop is not used again.

Source§

impl<T> ManuallyDrop<T>
where T: ?Sized,

1.20.0 · Source

pub unsafe fn drop(slot: &mut ManuallyDrop<T>)

Manually drops the contained value.

This is exactly equivalent to calling ptr::drop_in_place with a pointer to the contained value. As such, unless the contained value is a packed struct, the destructor will be called in-place without moving the value, and thus can be used to safely drop pinned data.

If you have ownership of the value, you can use ManuallyDrop::into_inner instead.

§Safety

This function runs the destructor of the contained value. Other than changes made by the destructor itself, the memory is left unchanged, and so as far as the compiler is concerned still holds a bit-pattern which is valid for the type T.

However, this “zombie” value should not be exposed to safe code, and this function should not be called more than once. To use a value after it’s been dropped, or drop a value multiple times, can cause Undefined Behavior (depending on what drop does). This is normally prevented by the type system, but users of ManuallyDrop must uphold those guarantees without assistance from the compiler.

Trait Implementations§

§

impl<T> Archive for ManuallyDrop<T>
where T: Archive,

§

const COPY_OPTIMIZATION: CopyOptimization<ManuallyDrop<T>>

An optimization flag that allows the bytes of this type to be copied directly to a writer instead of calling serialize. Read more
§

type Archived = ManuallyDrop<<T as Archive>::Archived>

The archived representation of this type. Read more
§

type Resolver = <T as Archive>::Resolver

The resolver for this type. It must contain all the additional information from serializing needed to make the archived type from the normal type.
§

fn resolve( &self, resolver: <ManuallyDrop<T> as Archive>::Resolver, out: Place<<ManuallyDrop<T> as Archive>::Archived>, )

Creates the archived version of this value at the given position and writes it to the given output. Read more
§

impl<T, C> CheckBytes<C> for ManuallyDrop<T>
where T: CheckBytes<C> + ?Sized, C: Fallible + ?Sized, <C as Fallible>::Error: Trace,

§

unsafe fn check_bytes( value: *const ManuallyDrop<T>, c: &mut C, ) -> Result<(), <C as Fallible>::Error>

Checks whether the given pointer points to a valid value within the given context. Read more
1.20.0 · Source§

impl<T> Clone for ManuallyDrop<T>
where T: Clone + ?Sized,

Source§

fn clone(&self) -> ManuallyDrop<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T: ConstDefault> ConstDefault for ManuallyDrop<T>

Source§

const DEFAULT: Self

Returns the compile-time “default value” for a type.
1.20.0 · Source§

impl<T> Debug for ManuallyDrop<T>
where T: Debug + ?Sized,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.20.0 · Source§

impl<T> Default for ManuallyDrop<T>
where T: Default + ?Sized,

Source§

fn default() -> ManuallyDrop<T>

Returns the “default value” for a type. Read more
1.20.0 · Source§

impl<T> Deref for ManuallyDrop<T>
where T: ?Sized,

Source§

type Target = T

The resulting type after dereferencing.
Source§

fn deref(&self) -> &T

Dereferences the value.
1.20.0 · Source§

impl<T> DerefMut for ManuallyDrop<T>
where T: ?Sized,

Source§

fn deref_mut(&mut self) -> &mut T

Mutably dereferences the value.
§

impl<T, D> Deserialize<ManuallyDrop<T>, D> for ManuallyDrop<<T as Archive>::Archived>
where T: Archive, <T as Archive>::Archived: Deserialize<T, D>, D: Fallible + ?Sized,

§

fn deserialize( &self, deserializer: &mut D, ) -> Result<ManuallyDrop<T>, <D as Fallible>::Error>

Deserializes using the given deserializer
§

impl<'a, T> Destructure for &'a ManuallyDrop<T>
where T: ?Sized,

§

type Underlying = T

The underlying type that is destructured.
§

type Destructuring = Borrow

The type of destructuring to perform.
§

fn underlying( &mut self, ) -> *mut <&'a ManuallyDrop<T> as Destructure>::Underlying

Returns a mutable pointer to the underlying type.
§

impl<'a, T> Destructure for &'a mut ManuallyDrop<T>
where T: ?Sized,

§

type Underlying = T

The underlying type that is destructured.
§

type Destructuring = Borrow

The type of destructuring to perform.
§

fn underlying( &mut self, ) -> *mut <&'a mut ManuallyDrop<T> as Destructure>::Underlying

Returns a mutable pointer to the underlying type.
§

impl<T> Destructure for ManuallyDrop<T>

§

type Underlying = T

The underlying type that is destructured.
§

type Destructuring = Move

The type of destructuring to perform.
§

fn underlying(&mut self) -> *mut <ManuallyDrop<T> as Destructure>::Underlying

Returns a mutable pointer to the underlying type.
1.20.0 · Source§

impl<T> Hash for ManuallyDrop<T>
where T: Hash + ?Sized,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<T: MemPod> MemPod for ManuallyDrop<T>

Available on crate feature unsafe_layout only.
Source§

fn zeroed() -> Self

Returns a new instance contrcuted from zeroes.
Source§

fn from_bytes(bytes: &[u8]) -> Self

Returns a new instance constructed from the given bytes. Read more
Source§

fn as_bytes(&self) -> &[u8]

Returns the instance’s data as a slice of bytes.
Source§

fn as_bytes_mut(&mut self) -> &mut [u8]

Returns the instance’s data as a mutable slice of bytes.
1.20.0 · Source§

impl<T> Ord for ManuallyDrop<T>
where T: Ord + ?Sized,

Source§

fn cmp(&self, other: &ManuallyDrop<T>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
1.20.0 · Source§

impl<T> PartialEq for ManuallyDrop<T>
where T: PartialEq + ?Sized,

Source§

fn eq(&self, other: &ManuallyDrop<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.20.0 · Source§

impl<T> PartialOrd for ManuallyDrop<T>
where T: PartialOrd + ?Sized,

Source§

fn partial_cmp(&self, other: &ManuallyDrop<T>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl<'a, T, U> Restructure<U> for &'a ManuallyDrop<T>
where U: 'a + ?Sized, T: ?Sized,

§

type Restructured = &'a ManuallyDrop<U>

The restructured version of this type.
§

unsafe fn restructure( &self, ptr: *mut U, ) -> <&'a ManuallyDrop<T> as Restructure<U>>::Restructured

Restructures a pointer to this type into the target type. Read more
§

impl<'a, T, U> Restructure<U> for &'a mut ManuallyDrop<T>
where U: 'a + ?Sized, T: ?Sized,

§

type Restructured = &'a mut ManuallyDrop<U>

The restructured version of this type.
§

unsafe fn restructure( &self, ptr: *mut U, ) -> <&'a mut ManuallyDrop<T> as Restructure<U>>::Restructured

Restructures a pointer to this type into the target type. Read more
§

impl<T, U> Restructure<U> for ManuallyDrop<T>

§

type Restructured = ManuallyDrop<U>

The restructured version of this type.
§

unsafe fn restructure( &self, ptr: *mut U, ) -> <ManuallyDrop<T> as Restructure<U>>::Restructured

Restructures a pointer to this type into the target type. Read more
§

impl<T, S> Serialize<S> for ManuallyDrop<T>
where T: Serialize<S>, S: Fallible + ?Sized,

§

fn serialize( &self, serializer: &mut S, ) -> Result<<ManuallyDrop<T> as Archive>::Resolver, <S as Fallible>::Error>

Writes the dependencies for the object and returns a resolver that can create the archived type.
§

impl<T> Zeroable for ManuallyDrop<T>
where T: Zeroable,

§

fn zeroed() -> Self

1.20.0 · Source§

impl<T> Copy for ManuallyDrop<T>
where T: Copy + ?Sized,

Source§

impl<T> DerefPure for ManuallyDrop<T>
where T: ?Sized,

1.20.0 · Source§

impl<T> Eq for ManuallyDrop<T>
where T: Eq + ?Sized,

§

impl<T> Pod for ManuallyDrop<T>
where T: Pod,

§

impl<T> Portable for ManuallyDrop<T>
where T: Portable,

1.20.0 · Source§

impl<T> StructuralPartialEq for ManuallyDrop<T>
where T: ?Sized,

Auto Trait Implementations§

§

impl<T> Freeze for ManuallyDrop<T>
where T: Freeze + ?Sized,

§

impl<T> RefUnwindSafe for ManuallyDrop<T>
where T: RefUnwindSafe + ?Sized,

§

impl<T> Send for ManuallyDrop<T>
where T: Send + ?Sized,

§

impl<T> Sync for ManuallyDrop<T>
where T: Sync + ?Sized,

§

impl<T> Unpin for ManuallyDrop<T>
where T: Unpin + ?Sized,

§

impl<T> UnwindSafe for ManuallyDrop<T>
where T: UnwindSafe + ?Sized,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> ArchivePointee for T

§

type ArchivedMetadata = ()

The archived version of the pointer metadata for this type.
§

fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata

Converts some archived metadata to the pointer metadata for itself.
§

impl<T> ArchiveUnsized for T
where T: Archive,

§

type Archived = <T as Archive>::Archived

The archived counterpart of this type. Unlike Archive, it may be unsized. Read more
§

fn archived_metadata( &self, ) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata

Creates the archived version of the metadata for this value.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> ByteSized for T

Source§

const BYTE_ALIGN: usize = _

The alignment of this type in bytes.
Source§

const BYTE_SIZE: usize = _

The size of this type in bytes.
Source§

fn byte_align(&self) -> usize

Returns the alignment of this type in bytes.
Source§

fn byte_size(&self) -> usize

Returns the size of this type in bytes. Read more
Source§

fn ptr_size_ratio(&self) -> [usize; 2]

Returns the size ratio between Ptr::BYTES and BYTE_SIZE. Read more
Source§

impl<T, R> Chain<R> for T
where T: ?Sized,

Source§

fn chain<F>(self, f: F) -> R
where F: FnOnce(Self) -> R, Self: Sized,

Chain a function which takes the parameter by value.
Source§

fn chain_ref<F>(&self, f: F) -> R
where F: FnOnce(&Self) -> R,

Chain a function which takes the parameter by shared reference.
Source§

fn chain_mut<F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self) -> R,

Chain a function which takes the parameter by exclusive reference.
§

impl<T> CheckedBitPattern for T
where T: AnyBitPattern,

§

type Bits = T

Self must have the same layout as the specified Bits except for the possible invalid bit patterns being checked during is_valid_bit_pattern.
§

fn is_valid_bit_pattern(_bits: &T) -> bool

If this function returns true, then it must be valid to reinterpret bits as &Self.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<T> ExtAny for T
where T: Any + ?Sized,

Source§

fn type_id() -> TypeId

Returns the TypeId of Self. Read more
Source§

fn type_of(&self) -> TypeId

Returns the TypeId of self. Read more
Source§

fn type_name(&self) -> &'static str

Returns the type name of self. Read more
Source§

fn type_is<T: 'static>(&self) -> bool

Returns true if Self is of type T. Read more
Source§

fn as_any_ref(&self) -> &dyn Any
where Self: Sized,

Upcasts &self as &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any
where Self: Sized,

Upcasts &mut self as &mut dyn Any. Read more
Source§

fn as_any_box(self: Box<Self>) -> Box<dyn Any>
where Self: Sized,

Upcasts Box<self> as Box<dyn Any>. Read more
Source§

fn downcast_ref<T: 'static>(&self) -> Option<&T>

Available on crate feature unsafe_layout only.
Returns some shared reference to the inner value if it is of type T. Read more
Source§

fn downcast_mut<T: 'static>(&mut self) -> Option<&mut T>

Available on crate feature unsafe_layout only.
Returns some exclusive reference to the inner value if it is of type T. Read more
Source§

impl<T> ExtMem for T
where T: ?Sized,

Source§

const NEEDS_DROP: bool = _

Know whether dropping values of this type matters, in compile-time.
Source§

fn mem_align_of<T>() -> usize

Returns the minimum alignment of the type in bytes. Read more
Source§

fn mem_align_of_val(&self) -> usize

Returns the alignment of the pointed-to value in bytes. Read more
Source§

fn mem_size_of<T>() -> usize

Returns the size of a type in bytes. Read more
Source§

fn mem_size_of_val(&self) -> usize

Returns the size of the pointed-to value in bytes. Read more
Source§

fn mem_copy(&self) -> Self
where Self: Copy,

Bitwise-copies a value. Read more
Source§

fn mem_needs_drop(&self) -> bool

Returns true if dropping values of this type matters. Read more
Source§

fn mem_drop(self)
where Self: Sized,

Drops self by running its destructor. Read more
Source§

fn mem_forget(self)
where Self: Sized,

Forgets about self without running its destructor. Read more
Source§

fn mem_replace(&mut self, other: Self) -> Self
where Self: Sized,

Replaces self with other, returning the previous value of self. Read more
Source§

fn mem_take(&mut self) -> Self
where Self: Default,

Replaces self with its default value, returning the previous value of self. Read more
Source§

fn mem_swap(&mut self, other: &mut Self)
where Self: Sized,

Swaps the value of self and other without deinitializing either one. Read more
Source§

unsafe fn mem_zeroed<T>() -> T

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

fn mem_as_bytes(&self) -> &[u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &[u8]. Read more
Source§

fn mem_as_bytes_mut(&mut self) -> &mut [u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &mut [u8]. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

Source§

impl<T> Hook for T

Source§

fn hook_ref<F>(self, f: F) -> Self
where F: FnOnce(&Self),

Applies a function which takes the parameter by shared reference, and then returns the (possibly) modified owned value. Read more
Source§

fn hook_mut<F>(self, f: F) -> Self
where F: FnOnce(&mut Self),

Applies a function which takes the parameter by exclusive reference, and then returns the (possibly) modified owned value. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> LayoutRaw for T

§

fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>

Returns the layout of the type.
§

impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
where T: SharedNiching<N1, N2>, N1: Niching<T>, N2: Niching<T>,

§

unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool

Returns whether the given value has been niched. Read more
§

fn resolve_niched(out: Place<NichedOption<T, N1>>)

Writes data to out indicating that a T is niched.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Metadata = ()

The metadata type for pointers and references to this type.
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
§

impl<T, S> SerializeUnsized<S> for T
where T: Serialize<S>, S: Fallible + Writer + ?Sized,

§

fn serialize_unsized( &self, serializer: &mut S, ) -> Result<usize, <S as Fallible>::Error>

Writes the object and returns the position of the archived type.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> AnyBitPattern for T
where T: Pod,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> NoUninit for T
where T: Pod,

§

impl<T> Ungil for T
where T: Send,