Struct SpanRelativeTo
pub struct SpanRelativeTo<'a> { /* private fields */ }
dep_jiff
and alloc
only.Expand description
A relative datetime for use with Span
APIs.
A relative datetime can be one of the following: civil::Date
,
civil::DateTime
or Zoned
. It can be constructed from any
of the preceding types via From
trait implementations.
A relative datetime is used to indicate how the calendar units of a Span
should be interpreted. For example, the span “1 month” does not have a
fixed meaning. One month from 2024-03-01
is 31 days, but one month from
2024-04-01
is 30 days. Similar for years.
When a relative datetime in time zone aware (i.e., it is a Zoned
), then
a Span
will also consider its day units to be variable in length. For
example, 2024-03-10
in America/New_York
was only 23 hours long, where
as 2024-11-03
in America/New_York
was 25 hours long. When a relative
datetime is civil, then days are considered to always be of a fixed 24
hour length.
This type is principally used as an input to one of several different
Span
APIs:
Span::round
rounds spans. A relative datetime is necessary when dealing with calendar units. (But spans without calendar units can be rounded without providing a relative datetime.)- Span arithmetic via
Span::checked_add
andSpan::checked_sub
. A relative datetime is needed when adding or subtracting spans with calendar units. - Span comarisons via
Span::compare
require a relative datetime when comparing spans with calendar units. - Computing the “total” duration as a single floating point number via
Span::total
also requires a relative datetime when dealing with calendar units.
§Example
This example shows how to round a span with larger calendar units to smaller units:
use jiff::{SpanRound, ToSpan, Unit, Zoned};
let zdt: Zoned = "2012-01-01[Antarctica/Troll]".parse()?;
let round = SpanRound::new().largest(Unit::Day).relative(&zdt);
assert_eq!(1.year().round(round)?, 366.days());
// If you tried this without a relative datetime, it would fail:
let round = SpanRound::new().largest(Unit::Day);
assert!(1.year().round(round).is_err());
Trait Implementations§
§impl<'a> Clone for SpanRelativeTo<'a>
impl<'a> Clone for SpanRelativeTo<'a>
§fn clone(&self) -> SpanRelativeTo<'a>
fn clone(&self) -> SpanRelativeTo<'a>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more§impl<'a> Debug for SpanRelativeTo<'a>
impl<'a> Debug for SpanRelativeTo<'a>
§impl<'a> From<&'a Zoned> for SpanRelativeTo<'a>
impl<'a> From<&'a Zoned> for SpanRelativeTo<'a>
§fn from(zdt: &'a Zoned) -> SpanRelativeTo<'a>
fn from(zdt: &'a Zoned) -> SpanRelativeTo<'a>
§impl From<Date> for SpanRelativeTo<'static>
impl From<Date> for SpanRelativeTo<'static>
§fn from(date: Date) -> SpanRelativeTo<'static>
fn from(date: Date) -> SpanRelativeTo<'static>
§impl From<DateTime> for SpanRelativeTo<'static>
impl From<DateTime> for SpanRelativeTo<'static>
§fn from(dt: DateTime) -> SpanRelativeTo<'static>
fn from(dt: DateTime) -> SpanRelativeTo<'static>
impl<'a> Copy for SpanRelativeTo<'a>
Auto Trait Implementations§
impl<'a> Freeze for SpanRelativeTo<'a>
impl<'a> RefUnwindSafe for SpanRelativeTo<'a>
impl<'a> Send for SpanRelativeTo<'a>
impl<'a> Sync for SpanRelativeTo<'a>
impl<'a> Unpin for SpanRelativeTo<'a>
impl<'a> UnwindSafe for SpanRelativeTo<'a>
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.