Enum Unit
pub enum Unit {
Year = 9,
Month = 8,
Week = 7,
Day = 6,
Hour = 5,
Minute = 4,
Second = 3,
Millisecond = 2,
Microsecond = 1,
Nanosecond = 0,
}
dep_jiff
and alloc
only.Expand description
A way to refer to a single calendar or clock unit.
This type is principally used in APIs involving a Span
, which is a
duration of time. For example, routines like Zoned::until
permit
specifying the largest unit of the span returned:
use jiff::{Unit, Zoned};
let zdt1: Zoned = "2024-07-06 17:40-04[America/New_York]".parse()?;
let zdt2: Zoned = "2024-11-05 08:00-05[America/New_York]".parse()?;
let span = zdt1.until((Unit::Year, &zdt2))?;
assert_eq!(format!("{span:#}"), "3mo 29d 14h 20m");
But a Unit
is also used in APIs for rounding datetimes themselves:
use jiff::{Unit, Zoned};
let zdt: Zoned = "2024-07-06 17:44:22.158-04[America/New_York]".parse()?;
let nearest_minute = zdt.round(Unit::Minute)?;
assert_eq!(
nearest_minute.to_string(),
"2024-07-06T17:44:00-04:00[America/New_York]",
);
§Example: ordering
This example demonstrates that Unit
has an ordering defined such that
bigger units compare greater than smaller units.
use jiff::Unit;
assert!(Unit::Year > Unit::Nanosecond);
assert!(Unit::Day > Unit::Hour);
assert!(Unit::Hour > Unit::Minute);
assert!(Unit::Hour > Unit::Minute);
assert_eq!(Unit::Hour, Unit::Hour);
Variants§
Year = 9
A Gregorian calendar year. It usually has 365 days for non-leap years, and 366 days for leap years.
Month = 8
A Gregorian calendar month. It usually has one of 28, 29, 30 or 31 days.
Week = 7
A week is 7 days that either begins on Sunday or Monday.
Day = 6
A day is usually 24 hours, but some days may have different lengths due to time zone transitions.
Hour = 5
An hour is always 60 minutes.
Minute = 4
A minute is always 60 seconds. (Jiff behaves as if leap seconds do not exist.)
Second = 3
A second is always 1,000 milliseconds.
Millisecond = 2
A millisecond is always 1,000 microseconds.
Microsecond = 1
A microsecond is always 1,000 nanoseconds.
Nanosecond = 0
A nanosecond is the smallest granularity of time supported by Jiff.
Trait Implementations§
§impl From<FractionalUnit> for Unit
impl From<FractionalUnit> for Unit
§fn from(u: FractionalUnit) -> Unit
fn from(u: FractionalUnit) -> Unit
§impl From<Unit> for DateTimeRound
impl From<Unit> for DateTimeRound
§fn from(unit: Unit) -> DateTimeRound
fn from(unit: Unit) -> DateTimeRound
§impl From<Unit> for SignedDurationRound
impl From<Unit> for SignedDurationRound
§fn from(unit: Unit) -> SignedDurationRound
fn from(unit: Unit) -> SignedDurationRound
§impl From<Unit> for TimestampRound
impl From<Unit> for TimestampRound
§fn from(unit: Unit) -> TimestampRound
fn from(unit: Unit) -> TimestampRound
§impl From<Unit> for ZonedRound
impl From<Unit> for ZonedRound
§fn from(unit: Unit) -> ZonedRound
fn from(unit: Unit) -> ZonedRound
§impl Ord for Unit
impl Ord for Unit
§impl PartialOrd for Unit
impl PartialOrd for Unit
impl Copy for Unit
impl Eq for Unit
impl StructuralPartialEq for Unit
Auto Trait Implementations§
impl Freeze for Unit
impl RefUnwindSafe for Unit
impl Send for Unit
impl Sync for Unit
impl Unpin for Unit
impl UnwindSafe for Unit
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.