Struct DateWith
pub struct DateWith { /* private fields */ }
dep_jiff
and alloc
only.Expand description
A builder for setting the fields on a Date
.
This builder is constructed via Date::with
.
§Example
The builder ensures one can chain together the individual components
of a date without it failing at an intermediate step. For example,
if you had a date of 2024-10-31
and wanted to change both the day
and the month, and each setting was validated independent of the other,
you would need to be careful to set the day first and then the month.
In some cases, you would need to set the month first and then the day!
But with the builder, you can set values in any order:
use jiff::civil::date;
let d1 = date(2024, 10, 31);
let d2 = d1.with().month(11).day(30).build()?;
assert_eq!(d2, date(2024, 11, 30));
let d1 = date(2024, 4, 30);
let d2 = d1.with().day(31).month(7).build()?;
assert_eq!(d2, date(2024, 7, 31));
Implementations§
§impl DateWith
impl DateWith
pub fn build(self) -> Result<Date, Error> ⓘ
pub fn build(self) -> Result<Date, Error> ⓘ
Create a new Date
from the fields set on this configuration.
An error occurs when the fields combine to an invalid date.
For any fields not set on this configuration, the values are taken from
the Date
that originally created this configuration. When no values
are set, this routine is guaranteed to succeed and will always return
the original date without modification.
§Example
This creates a date corresponding to the last day in the year:
use jiff::civil::date;
assert_eq!(
date(2023, 1, 1).with().day_of_year_no_leap(365).build()?,
date(2023, 12, 31),
);
// It also works with leap years for the same input:
assert_eq!(
date(2024, 1, 1).with().day_of_year_no_leap(365).build()?,
date(2024, 12, 31),
);
§Example: error for invalid date
If the fields combine to form an invalid date, then an error is returned:
use jiff::civil::date;
let d = date(2024, 11, 30);
assert!(d.with().day(31).build().is_err());
let d = date(2024, 2, 29);
assert!(d.with().year(2023).build().is_err());
pub fn year(self, year: i16) -> DateWith
pub fn year(self, year: i16) -> DateWith
Set the year field on a Date
.
One can access this value via Date::year
.
This overrides any previous year settings.
§Errors
This returns an error when DateWith::build
is called if the given
year is outside the range -9999..=9999
. This can also return an error
if the resulting date is otherwise invalid.
§Example
This shows how to create a new date with a different year:
use jiff::civil::date;
let d1 = date(2005, 11, 5);
assert_eq!(d1.year(), 2005);
let d2 = d1.with().year(2007).build()?;
assert_eq!(d2.year(), 2007);
§Example: only changing the year can fail
For example, while 2024-02-29
is valid, 2023-02-29
is not:
use jiff::civil::date;
let d1 = date(2024, 2, 29);
assert!(d1.with().year(2023).build().is_err());
pub fn era_year(self, year: i16, era: Era) -> DateWith
pub fn era_year(self, year: i16, era: Era) -> DateWith
Set year of a date via its era and its non-negative numeric component.
One can access this value via Date::era_year
.
§Errors
This returns an error when DateWith::build
is called if the year is
outside the range for the era specified. For Era::BCE
, the range is
1..=10000
. For Era::CE
, the range is 1..=9999
.
§Example
This shows that CE
years are equivalent to the years used by this
crate:
use jiff::civil::{Era, date};
let d1 = date(2005, 11, 5);
assert_eq!(d1.year(), 2005);
let d2 = d1.with().era_year(2007, Era::CE).build()?;
assert_eq!(d2.year(), 2007);
// CE years are always positive and can be at most 9999:
assert!(d1.with().era_year(-5, Era::CE).build().is_err());
assert!(d1.with().era_year(10_000, Era::CE).build().is_err());
But BCE
years always correspond to years less than or equal to 0
in this crate:
use jiff::civil::{Era, date};
let d1 = date(-27, 7, 1);
assert_eq!(d1.year(), -27);
assert_eq!(d1.era_year(), (28, Era::BCE));
let d2 = d1.with().era_year(509, Era::BCE).build()?;
assert_eq!(d2.year(), -508);
assert_eq!(d2.era_year(), (509, Era::BCE));
let d2 = d1.with().era_year(10_000, Era::BCE).build()?;
assert_eq!(d2.year(), -9_999);
assert_eq!(d2.era_year(), (10_000, Era::BCE));
// BCE years are always positive and can be at most 10000:
assert!(d1.with().era_year(-5, Era::BCE).build().is_err());
assert!(d1.with().era_year(10_001, Era::BCE).build().is_err());
§Example: overrides DateWith::year
Setting this option will override any previous DateWith::year
option:
use jiff::civil::{Era, date};
let d1 = date(2024, 7, 2);
let d2 = d1.with().year(2000).era_year(1900, Era::CE).build()?;
assert_eq!(d2, date(1900, 7, 2));
Similarly, DateWith::year
will override any previous call to
DateWith::era_year
:
use jiff::civil::{Era, date};
let d1 = date(2024, 7, 2);
let d2 = d1.with().era_year(1900, Era::CE).year(2000).build()?;
assert_eq!(d2, date(2000, 7, 2));
pub fn month(self, month: i8) -> DateWith
pub fn month(self, month: i8) -> DateWith
Set the month field on a Date
.
One can access this value via Date::month
.
This overrides any previous month settings.
§Errors
This returns an error when DateWith::build
is called if the given
month is outside the range 1..=12
. This can also return an error if
the resulting date is otherwise invalid.
§Example
This shows how to create a new date with a different month:
use jiff::civil::date;
let d1 = date(2005, 11, 5);
assert_eq!(d1.month(), 11);
let d2 = d1.with().month(6).build()?;
assert_eq!(d2.month(), 6);
§Example: only changing the month can fail
For example, while 2024-10-31
is valid, 2024-11-31
is not:
use jiff::civil::date;
let d = date(2024, 10, 31);
assert!(d.with().month(11).build().is_err());
pub fn day(self, day: i8) -> DateWith
pub fn day(self, day: i8) -> DateWith
Set the day field on a Date
.
One can access this value via Date::day
.
This overrides any previous day settings.
§Errors
This returns an error when DateWith::build
is called if the given
given day is outside of allowable days for the corresponding year and
month fields.
§Example
This shows some examples of setting the day, including a leap day:
use jiff::civil::date;
let d1 = date(2024, 2, 5);
assert_eq!(d1.day(), 5);
let d2 = d1.with().day(10).build()?;
assert_eq!(d2.day(), 10);
let d3 = d1.with().day(29).build()?;
assert_eq!(d3.day(), 29);
§Example: changing only the day can fail
This shows some examples that will fail:
use jiff::civil::date;
let d1 = date(2023, 2, 5);
// 2023 is not a leap year
assert!(d1.with().day(29).build().is_err());
// September has 30 days, not 31.
let d1 = date(2023, 9, 5);
assert!(d1.with().day(31).build().is_err());
pub fn day_of_year(self, day: i16) -> DateWith
pub fn day_of_year(self, day: i16) -> DateWith
Set the day field on a Date
via the ordinal number of a day within
a year.
When used, any settings for month are ignored since the month is determined by the day of the year.
The valid values for day
are 1..=366
. Note though that 366
is
only valid for leap years.
This overrides any previous day settings.
§Errors
This returns an error when DateWith::build
is called if the given
day is outside the allowed range of 1..=366
, or when a value of 366
is given for a non-leap year.
§Example
This demonstrates that if a year is a leap year, then 60
corresponds
to February 29:
use jiff::civil::date;
let d = date(2024, 1, 1);
assert_eq!(d.with().day_of_year(60).build()?, date(2024, 2, 29));
But for non-leap years, day 60 is March 1:
use jiff::civil::date;
let d = date(2023, 1, 1);
assert_eq!(d.with().day_of_year(60).build()?, date(2023, 3, 1));
And using 366
for a non-leap year will result in an error, since
non-leap years only have 365 days:
use jiff::civil::date;
let d = date(2023, 1, 1);
assert!(d.with().day_of_year(366).build().is_err());
// The maximal year is not a leap year, so it returns an error too.
let d = date(9999, 1, 1);
assert!(d.with().day_of_year(366).build().is_err());
pub fn day_of_year_no_leap(self, day: i16) -> DateWith
pub fn day_of_year_no_leap(self, day: i16) -> DateWith
Set the day field on a Date
via the ordinal number of a day within
a year, but ignoring leap years.
When used, any settings for month are ignored since the month is determined by the day of the year.
The valid values for day
are 1..=365
. The value 365
always
corresponds to the last day of the year, even for leap years. It is
impossible for this routine to return a date corresponding to February
29.
This overrides any previous day settings.
§Errors
This returns an error when DateWith::build
is called if the given
day is outside the allowed range of 1..=365
.
§Example
This demonstrates that 60
corresponds to March 1, regardless of
whether the year is a leap year or not:
use jiff::civil::date;
assert_eq!(
date(2023, 1, 1).with().day_of_year_no_leap(60).build()?,
date(2023, 3, 1),
);
assert_eq!(
date(2024, 1, 1).with().day_of_year_no_leap(60).build()?,
date(2024, 3, 1),
);
And using 365
for any year will always yield the last day of the
year:
use jiff::civil::date;
let d = date(2023, 1, 1);
assert_eq!(
d.with().day_of_year_no_leap(365).build()?,
d.last_of_year(),
);
let d = date(2024, 1, 1);
assert_eq!(
d.with().day_of_year_no_leap(365).build()?,
d.last_of_year(),
);
let d = date(9999, 1, 1);
assert_eq!(
d.with().day_of_year_no_leap(365).build()?,
d.last_of_year(),
);
A value of 366
is out of bounds, even for leap years:
use jiff::civil::date;
let d = date(2024, 1, 1);
assert!(d.with().day_of_year_no_leap(366).build().is_err());
Trait Implementations§
Auto Trait Implementations§
impl Freeze for DateWith
impl RefUnwindSafe for DateWith
impl Send for DateWith
impl Sync for DateWith
impl Unpin for DateWith
impl UnwindSafe for DateWith
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.