#[non_exhaustive]pub enum Ordering {
Relaxed,
Release,
Acquire,
AcqRel,
SeqCst,
}
dep_bytemuck
only.Expand description
Atomic memory orderings
Memory orderings specify the way atomic operations synchronize memory.
In its weakest Ordering::Relaxed
, only the memory directly touched by the
operation is synchronized. On the other hand, a store-load pair of Ordering::SeqCst
operations synchronize other memory while additionally preserving a total order of such
operations across all threads.
Rust’s memory orderings are the same as those of C++20.
For more information see the nomicon.
Variants (Non-exhaustive)§
This enum is marked as non-exhaustive
Relaxed
No ordering constraints, only atomic operations.
Corresponds to memory_order_relaxed
in C++20.
Release
When coupled with a store, all previous operations become ordered
before any load of this value with Acquire
(or stronger) ordering.
In particular, all previous writes become visible to all threads
that perform an Acquire
(or stronger) load of this value.
Notice that using this ordering for an operation that combines loads
and stores leads to a Relaxed
load operation!
This ordering is only applicable for operations that can perform a store.
Corresponds to memory_order_release
in C++20.
Acquire
When coupled with a load, if the loaded value was written by a store operation with
Release
(or stronger) ordering, then all subsequent operations
become ordered after that store. In particular, all subsequent loads will see data
written before the store.
Notice that using this ordering for an operation that combines loads
and stores leads to a Relaxed
store operation!
This ordering is only applicable for operations that can perform a load.
Corresponds to memory_order_acquire
in C++20.
AcqRel
Has the effects of both Acquire
and Release
together:
For loads it uses Acquire
ordering. For stores it uses the Release
ordering.
Notice that in the case of compare_and_swap
, it is possible that the operation ends up
not performing any store and hence it has just Acquire
ordering. However,
AcqRel
will never perform Relaxed
accesses.
This ordering is only applicable for operations that combine both loads and stores.
Corresponds to memory_order_acq_rel
in C++20.
SeqCst
Like Acquire
/Release
/AcqRel
(for load, store, and load-with-store
operations, respectively) with the additional guarantee that all threads see all
sequentially consistent operations in the same order.
Corresponds to memory_order_seq_cst
in C++20.
Trait Implementations§
Source§impl BitSized<8> for AtomicOrdering
impl BitSized<8> for AtomicOrdering
Source§const BIT_SIZE: usize = _
const BIT_SIZE: usize = _
Source§const MIN_BYTE_SIZE: usize = _
const MIN_BYTE_SIZE: usize = _
§impl CompareAndSetOrdering for Ordering
impl CompareAndSetOrdering for Ordering
impl Copy for Ordering
impl Eq for Ordering
impl StructuralPartialEq for Ordering
Auto Trait Implementations§
impl Freeze for Ordering
impl RefUnwindSafe for Ordering
impl Send for Ordering
impl Sync for Ordering
impl Unpin for Ordering
impl UnwindSafe for Ordering
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.