devela::_dep::bumpalo::core_alloc::sync

Struct Weak

1.36.0 · Source
pub struct Weak<T, A = Global>
where A: Allocator, T: ?Sized,
{ /* private fields */ }
Available on crate feature dep_bumpalo only.
Expand description

Weak is a version of Arc that holds a non-owning reference to the managed allocation.

The allocation is accessed by calling upgrade on the Weak pointer, which returns an Option<Arc<T>>.

Since a Weak reference does not count towards ownership, it will not prevent the value stored in the allocation from being dropped, and Weak itself makes no guarantees about the value still being present. Thus it may return None when upgraded. Note however that a Weak reference does prevent the allocation itself (the backing store) from being deallocated.

A Weak pointer is useful for keeping a temporary reference to the allocation managed by Arc without preventing its inner value from being dropped. It is also used to prevent circular references between Arc pointers, since mutual owning references would never allow either Arc to be dropped. For example, a tree could have strong Arc pointers from parent nodes to children, and Weak pointers from children back to their parents.

The typical way to obtain a Weak pointer is to call Arc::downgrade.

Implementations§

Source§

impl<T> Weak<T>

1.10.0 (const: 1.73.0) · Source

pub const fn new() -> Weak<T>

Available on crate feature alloc only.

Constructs a new Weak<T>, without allocating any memory. Calling upgrade on the return value always gives None.

§Examples
use std::sync::Weak;

let empty: Weak<i64> = Weak::new();
assert!(empty.upgrade().is_none());
Source§

impl<T, A> Weak<T, A>
where A: Allocator,

Source

pub fn new_in(alloc: A) -> Weak<T, A>

🔬This is a nightly-only experimental API. (allocator_api)
Available on crate feature alloc only.

Constructs a new Weak<T, A>, without allocating any memory, technically in the provided allocator. Calling upgrade on the return value always gives None.

§Examples
#![feature(allocator_api)]

use std::sync::Weak;
use std::alloc::System;

let empty: Weak<i64, _> = Weak::new_in(System);
assert!(empty.upgrade().is_none());
Source§

impl<T> Weak<T>
where T: ?Sized,

1.45.0 · Source

pub unsafe fn from_raw(ptr: *const T) -> Weak<T>

Available on crate feature alloc only.

Converts a raw pointer previously created by into_raw back into Weak<T>.

This can be used to safely get a strong reference (by calling upgrade later) or to deallocate the weak count by dropping the Weak<T>.

It takes ownership of one weak reference (with the exception of pointers created by new, as these don’t own anything; the method still works on them).

§Safety

The pointer must have originated from the into_raw and must still own its potential weak reference.

It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this takes ownership of one weak reference currently represented as a raw pointer (the weak count is not modified by this operation) and therefore it must be paired with a previous call to into_raw.

§Examples
use std::sync::{Arc, Weak};

let strong = Arc::new("hello".to_owned());

let raw_1 = Arc::downgrade(&strong).into_raw();
let raw_2 = Arc::downgrade(&strong).into_raw();

assert_eq!(2, Arc::weak_count(&strong));

assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
assert_eq!(1, Arc::weak_count(&strong));

drop(strong);

// Decrement the last weak count.
assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
Source§

impl<T, A> Weak<T, A>
where A: Allocator, T: ?Sized,

Source

pub fn allocator(&self) -> &A

🔬This is a nightly-only experimental API. (allocator_api)
Available on crate feature alloc only.

Returns a reference to the underlying allocator.

1.45.0 · Source

pub fn as_ptr(&self) -> *const T

Available on crate feature alloc only.

Returns a raw pointer to the object T pointed to by this Weak<T>.

The pointer is valid only if there are some strong references. The pointer may be dangling, unaligned or even null otherwise.

§Examples
use std::sync::Arc;
use std::ptr;

let strong = Arc::new("hello".to_owned());
let weak = Arc::downgrade(&strong);
// Both point to the same object
assert!(ptr::eq(&*strong, weak.as_ptr()));
// The strong here keeps it alive, so we can still access the object.
assert_eq!("hello", unsafe { &*weak.as_ptr() });

drop(strong);
// But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
// undefined behavior.
// assert_eq!("hello", unsafe { &*weak.as_ptr() });
1.45.0 · Source

pub fn into_raw(self) -> *const T

Available on crate feature alloc only.

Consumes the Weak<T> and turns it into a raw pointer.

This converts the weak pointer into a raw pointer, while still preserving the ownership of one weak reference (the weak count is not modified by this operation). It can be turned back into the Weak<T> with from_raw.

The same restrictions of accessing the target of the pointer as with as_ptr apply.

§Examples
use std::sync::{Arc, Weak};

let strong = Arc::new("hello".to_owned());
let weak = Arc::downgrade(&strong);
let raw = weak.into_raw();

assert_eq!(1, Arc::weak_count(&strong));
assert_eq!("hello", unsafe { &*raw });

drop(unsafe { Weak::from_raw(raw) });
assert_eq!(0, Arc::weak_count(&strong));
Source

pub fn into_raw_with_allocator(self) -> (*const T, A)

🔬This is a nightly-only experimental API. (allocator_api)
Available on crate feature alloc only.

Consumes the Weak<T>, returning the wrapped pointer and allocator.

This converts the weak pointer into a raw pointer, while still preserving the ownership of one weak reference (the weak count is not modified by this operation). It can be turned back into the Weak<T> with from_raw_in.

The same restrictions of accessing the target of the pointer as with as_ptr apply.

§Examples
#![feature(allocator_api)]
use std::sync::{Arc, Weak};
use std::alloc::System;

let strong = Arc::new_in("hello".to_owned(), System);
let weak = Arc::downgrade(&strong);
let (raw, alloc) = weak.into_raw_with_allocator();

assert_eq!(1, Arc::weak_count(&strong));
assert_eq!("hello", unsafe { &*raw });

drop(unsafe { Weak::from_raw_in(raw, alloc) });
assert_eq!(0, Arc::weak_count(&strong));
Source

pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Weak<T, A>

🔬This is a nightly-only experimental API. (allocator_api)
Available on crate feature alloc only.

Converts a raw pointer previously created by into_raw back into Weak<T> in the provided allocator.

This can be used to safely get a strong reference (by calling upgrade later) or to deallocate the weak count by dropping the Weak<T>.

It takes ownership of one weak reference (with the exception of pointers created by new, as these don’t own anything; the method still works on them).

§Safety

The pointer must have originated from the into_raw and must still own its potential weak reference, and must point to a block of memory allocated by alloc.

It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this takes ownership of one weak reference currently represented as a raw pointer (the weak count is not modified by this operation) and therefore it must be paired with a previous call to into_raw.

§Examples
use std::sync::{Arc, Weak};

let strong = Arc::new("hello".to_owned());

let raw_1 = Arc::downgrade(&strong).into_raw();
let raw_2 = Arc::downgrade(&strong).into_raw();

assert_eq!(2, Arc::weak_count(&strong));

assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
assert_eq!(1, Arc::weak_count(&strong));

drop(strong);

// Decrement the last weak count.
assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
Source§

impl<T, A> Weak<T, A>
where A: Allocator, T: ?Sized,

1.4.0 · Source

pub fn upgrade(&self) -> Option<Arc<T, A>>
where A: Clone,

Available on crate feature alloc only.

Attempts to upgrade the Weak pointer to an Arc, delaying dropping of the inner value if successful.

Returns None if the inner value has since been dropped.

§Examples
use std::sync::Arc;

let five = Arc::new(5);

let weak_five = Arc::downgrade(&five);

let strong_five: Option<Arc<_>> = weak_five.upgrade();
assert!(strong_five.is_some());

// Destroy all strong pointers.
drop(strong_five);
drop(five);

assert!(weak_five.upgrade().is_none());
1.41.0 · Source

pub fn strong_count(&self) -> usize

Available on crate feature alloc only.

Gets the number of strong (Arc) pointers pointing to this allocation.

If self was created using Weak::new, this will return 0.

1.41.0 · Source

pub fn weak_count(&self) -> usize

Available on crate feature alloc only.

Gets an approximation of the number of Weak pointers pointing to this allocation.

If self was created using Weak::new, or if there are no remaining strong pointers, this will return 0.

§Accuracy

Due to implementation details, the returned value can be off by 1 in either direction when other threads are manipulating any Arcs or Weaks pointing to the same allocation.

1.39.0 · Source

pub fn ptr_eq(&self, other: &Weak<T, A>) -> bool

Available on crate feature alloc only.

Returns true if the two Weaks point to the same allocation similar to ptr::eq, or if both don’t point to any allocation (because they were created with Weak::new()). However, this function ignores the metadata of dyn Trait pointers.

§Notes

Since this compares pointers it means that Weak::new() will equal each other, even though they don’t point to any allocation.

§Examples
use std::sync::Arc;

let first_rc = Arc::new(5);
let first = Arc::downgrade(&first_rc);
let second = Arc::downgrade(&first_rc);

assert!(first.ptr_eq(&second));

let third_rc = Arc::new(5);
let third = Arc::downgrade(&third_rc);

assert!(!first.ptr_eq(&third));

Comparing Weak::new.

use std::sync::{Arc, Weak};

let first = Weak::new();
let second = Weak::new();
assert!(first.ptr_eq(&second));

let third_rc = Arc::new(());
let third = Arc::downgrade(&third_rc);
assert!(!first.ptr_eq(&third));

Trait Implementations§

§

impl<T> Archive for Weak<T>
where T: ArchiveUnsized + ?Sized,

§

type Archived = ArchivedRcWeak<<T as ArchiveUnsized>::Archived, ArcFlavor>

The archived representation of this type. Read more
§

type Resolver = RcWeakResolver

The resolver for this type. It must contain all the additional information from serializing needed to make the archived type from the normal type.
§

fn resolve( &self, resolver: <Weak<T> as Archive>::Resolver, out: Place<<Weak<T> as Archive>::Archived>, )

Creates the archived version of this value at the given position and writes it to the given output. Read more
§

const COPY_OPTIMIZATION: CopyOptimization<Self> = _

An optimization flag that allows the bytes of this type to be copied directly to a writer instead of calling serialize. Read more
1.4.0 · Source§

impl<T, A> Clone for Weak<T, A>
where A: Allocator + Clone, T: ?Sized,

Source§

fn clone(&self) -> Weak<T, A>

Makes a clone of the Weak pointer that points to the same allocation.

§Examples
use std::sync::{Arc, Weak};

let weak_five = Arc::downgrade(&Arc::new(5));

let _ = Weak::clone(&weak_five);
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T: ConstDefault> ConstDefault for Weak<T>

Available on crate feature std only.
Source§

const DEFAULT: Self

Returns the compile-time “default value” for a type.
1.4.0 · Source§

impl<T, A> Debug for Weak<T, A>
where A: Allocator, T: ?Sized,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.10.0 · Source§

impl<T> Default for Weak<T>

Source§

fn default() -> Weak<T>

Constructs a new Weak<T>, without allocating memory. Calling upgrade on the return value always gives None.

§Examples
use std::sync::Weak;

let empty: Weak<i64> = Default::default();
assert!(empty.upgrade().is_none());
§

impl<T, D> Deserialize<Weak<T>, D> for ArchivedRcWeak<<T as ArchiveUnsized>::Archived, ArcFlavor>

§

fn deserialize( &self, deserializer: &mut D, ) -> Result<Weak<T>, <D as Fallible>::Error>

Deserializes using the given deserializer
1.4.0 · Source§

impl<T, A> Drop for Weak<T, A>
where A: Allocator, T: ?Sized,

Source§

fn drop(&mut self)

Drops the Weak pointer.

§Examples
use std::sync::{Arc, Weak};

struct Foo;

impl Drop for Foo {
    fn drop(&mut self) {
        println!("dropped!");
    }
}

let foo = Arc::new(Foo);
let weak_foo = Arc::downgrade(&foo);
let other_weak_foo = Weak::clone(&weak_foo);

drop(weak_foo);   // Doesn't print anything
drop(foo);        // Prints "dropped!"

assert!(other_weak_foo.upgrade().is_none());
§

impl<T, S> Serialize<S> for Weak<T>
where T: SerializeUnsized<S> + 'static + ?Sized, S: Fallible + Writer + Sharing + ?Sized, <S as Fallible>::Error: Source,

§

fn serialize( &self, serializer: &mut S, ) -> Result<<Weak<T> as Archive>::Resolver, <S as Fallible>::Error>

Writes the dependencies for the object and returns a resolver that can create the archived type.
Source§

impl<T, U, A> CoerceUnsized<Weak<U, A>> for Weak<T, A>
where T: Unsize<U> + ?Sized, A: Allocator, U: ?Sized,

Source§

impl<T, U> DispatchFromDyn<Weak<U>> for Weak<T>
where T: Unsize<U> + ?Sized, U: ?Sized,

Source§

impl<T, A> PinCoerceUnsized for Weak<T, A>
where A: Allocator, T: ?Sized,

1.4.0 · Source§

impl<T, A> Send for Weak<T, A>
where T: Sync + Send + ?Sized, A: Allocator + Send,

1.4.0 · Source§

impl<T, A> Sync for Weak<T, A>
where T: Sync + Send + ?Sized, A: Allocator + Sync,

Auto Trait Implementations§

§

impl<T, A> Freeze for Weak<T, A>
where A: Freeze, T: ?Sized,

§

impl<T, A> RefUnwindSafe for Weak<T, A>

§

impl<T, A> Unpin for Weak<T, A>
where A: Unpin, T: ?Sized,

§

impl<T, A> UnwindSafe for Weak<T, A>
where A: UnwindSafe, T: RefUnwindSafe + ?Sized,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> ArchivePointee for T

§

type ArchivedMetadata = ()

The archived version of the pointer metadata for this type.
§

fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata

Converts some archived metadata to the pointer metadata for itself.
§

impl<T> ArchiveUnsized for T
where T: Archive,

§

type Archived = <T as Archive>::Archived

The archived counterpart of this type. Unlike Archive, it may be unsized. Read more
§

fn archived_metadata( &self, ) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata

Creates the archived version of the metadata for this value.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> ByteSized for T

Source§

const BYTE_ALIGN: usize = _

The alignment of this type in bytes.
Source§

const BYTE_SIZE: usize = _

The size of this type in bytes.
Source§

fn byte_align(&self) -> usize

Returns the alignment of this type in bytes.
Source§

fn byte_size(&self) -> usize

Returns the size of this type in bytes. Read more
Source§

fn ptr_size_ratio(&self) -> [usize; 2]

Returns the size ratio between Ptr::BYTES and BYTE_SIZE. Read more
Source§

impl<T, R> Chain<R> for T
where T: ?Sized,

Source§

fn chain<F>(self, f: F) -> R
where F: FnOnce(Self) -> R, Self: Sized,

Chain a function which takes the parameter by value.
Source§

fn chain_ref<F>(&self, f: F) -> R
where F: FnOnce(&Self) -> R,

Chain a function which takes the parameter by shared reference.
Source§

fn chain_mut<F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self) -> R,

Chain a function which takes the parameter by exclusive reference.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> ExtAny for T
where T: Any + ?Sized,

Source§

fn type_id() -> TypeId

Returns the TypeId of Self. Read more
Source§

fn type_of(&self) -> TypeId

Returns the TypeId of self. Read more
Source§

fn type_name(&self) -> &'static str

Returns the type name of self. Read more
Source§

fn type_is<T: 'static>(&self) -> bool

Returns true if Self is of type T. Read more
Source§

fn as_any_ref(&self) -> &dyn Any
where Self: Sized,

Upcasts &self as &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any
where Self: Sized,

Upcasts &mut self as &mut dyn Any. Read more
Source§

fn as_any_box(self: Box<Self>) -> Box<dyn Any>
where Self: Sized,

Upcasts Box<self> as Box<dyn Any>. Read more
Source§

fn downcast_ref<T: 'static>(&self) -> Option<&T>

Available on crate feature unsafe_layout only.
Returns some shared reference to the inner value if it is of type T. Read more
Source§

fn downcast_mut<T: 'static>(&mut self) -> Option<&mut T>

Available on crate feature unsafe_layout only.
Returns some exclusive reference to the inner value if it is of type T. Read more
Source§

impl<T> ExtMem for T
where T: ?Sized,

Source§

const NEEDS_DROP: bool = _

Know whether dropping values of this type matters, in compile-time.
Source§

fn mem_align_of<T>() -> usize

Returns the minimum alignment of the type in bytes. Read more
Source§

fn mem_align_of_val(&self) -> usize

Returns the alignment of the pointed-to value in bytes. Read more
Source§

fn mem_size_of<T>() -> usize

Returns the size of a type in bytes. Read more
Source§

fn mem_size_of_val(&self) -> usize

Returns the size of the pointed-to value in bytes. Read more
Source§

fn mem_copy(&self) -> Self
where Self: Copy,

Bitwise-copies a value. Read more
Source§

fn mem_needs_drop(&self) -> bool

Returns true if dropping values of this type matters. Read more
Source§

fn mem_drop(self)
where Self: Sized,

Drops self by running its destructor. Read more
Source§

fn mem_forget(self)
where Self: Sized,

Forgets about self without running its destructor. Read more
Source§

fn mem_replace(&mut self, other: Self) -> Self
where Self: Sized,

Replaces self with other, returning the previous value of self. Read more
Source§

fn mem_take(&mut self) -> Self
where Self: Default,

Replaces self with its default value, returning the previous value of self. Read more
Source§

fn mem_swap(&mut self, other: &mut Self)
where Self: Sized,

Swaps the value of self and other without deinitializing either one. Read more
Source§

unsafe fn mem_zeroed<T>() -> T

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

fn mem_as_bytes(&self) -> &[u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &[u8]. Read more
Source§

fn mem_as_bytes_mut(&mut self) -> &mut [u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &mut [u8]. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

Source§

impl<T> Hook for T

Source§

fn hook_ref<F>(self, f: F) -> Self
where F: FnOnce(&Self),

Applies a function which takes the parameter by shared reference, and then returns the (possibly) modified owned value. Read more
Source§

fn hook_mut<F>(self, f: F) -> Self
where F: FnOnce(&mut Self),

Applies a function which takes the parameter by exclusive reference, and then returns the (possibly) modified owned value. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> LayoutRaw for T

§

fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>

Returns the layout of the type.
§

impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
where T: SharedNiching<N1, N2>, N1: Niching<T>, N2: Niching<T>,

§

unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool

Returns whether the given value has been niched. Read more
§

fn resolve_niched(out: Place<NichedOption<T, N1>>)

Writes data to out indicating that a T is niched.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Metadata = ()

The metadata type for pointers and references to this type.
§

impl<T, S> SerializeUnsized<S> for T
where T: Serialize<S>, S: Fallible + Writer + ?Sized,

§

fn serialize_unsized( &self, serializer: &mut S, ) -> Result<usize, <S as Fallible>::Error>

Writes the object and returns the position of the archived type.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Ungil for T
where T: Send,