pub struct BinaryHeap<T, A = Global>where
A: Allocator,{ /* private fields */ }
dep_bumpalo
only.Expand description
A priority queue implemented with a binary heap.
This will be a max-heap.
It is a logic error for an item to be modified in such a way that the
item’s ordering relative to any other item, as determined by the Ord
trait, changes while it is in the heap. This is normally only possible
through interior mutability, global state, I/O, or unsafe code. The
behavior resulting from such a logic error is not specified, but will
be encapsulated to the BinaryHeap
that observed the logic error and not
result in undefined behavior. This could include panics, incorrect results,
aborts, memory leaks, and non-termination.
As long as no elements change their relative order while being in the heap
as described above, the API of BinaryHeap
guarantees that the heap
invariant remains intact i.e. its methods all behave as documented. For
example if a method is documented as iterating in sorted order, that’s
guaranteed to work as long as elements in the heap have not changed order,
even in the presence of closures getting unwinded out of, iterators getting
leaked, and similar foolishness.
§Examples
use std::collections::BinaryHeap;
// Type inference lets us omit an explicit type signature (which
// would be `BinaryHeap<i32>` in this example).
let mut heap = BinaryHeap::new();
// We can use peek to look at the next item in the heap. In this case,
// there's no items in there yet so we get None.
assert_eq!(heap.peek(), None);
// Let's add some scores...
heap.push(1);
heap.push(5);
heap.push(2);
// Now peek shows the most important item in the heap.
assert_eq!(heap.peek(), Some(&5));
// We can check the length of a heap.
assert_eq!(heap.len(), 3);
// We can iterate over the items in the heap, although they are returned in
// a random order.
for x in &heap {
println!("{x}");
}
// If we instead pop these scores, they should come back in order.
assert_eq!(heap.pop(), Some(5));
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
// We can clear the heap of any remaining items.
heap.clear();
// The heap should now be empty.
assert!(heap.is_empty())
A BinaryHeap
with a known list of items can be initialized from an array:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 5, 2]);
§Min-heap
Either core::cmp::Reverse
or a custom Ord
implementation can be used to
make BinaryHeap
a min-heap. This makes heap.pop()
return the smallest
value instead of the greatest one.
use std::collections::BinaryHeap;
use std::cmp::Reverse;
let mut heap = BinaryHeap::new();
// Wrap values in `Reverse`
heap.push(Reverse(1));
heap.push(Reverse(5));
heap.push(Reverse(2));
// If we pop these scores now, they should come back in the reverse order.
assert_eq!(heap.pop(), Some(Reverse(1)));
assert_eq!(heap.pop(), Some(Reverse(2)));
assert_eq!(heap.pop(), Some(Reverse(5)));
assert_eq!(heap.pop(), None);
§Time complexity
The value for push
is an expected cost; the method documentation gives a
more detailed analysis.
Implementations§
Source§impl<T> BinaryHeap<T>where
T: Ord,
impl<T> BinaryHeap<T>where
T: Ord,
1.0.0 (const: 1.80.0) · Sourcepub const fn new() -> BinaryHeap<T>
Available on crate feature alloc
only.
pub const fn new() -> BinaryHeap<T>
alloc
only.Creates an empty BinaryHeap
as a max-heap.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.push(4);
1.0.0 · Sourcepub fn with_capacity(capacity: usize) -> BinaryHeap<T>
Available on crate feature alloc
only.
pub fn with_capacity(capacity: usize) -> BinaryHeap<T>
alloc
only.Creates an empty BinaryHeap
with at least the specified capacity.
The binary heap will be able to hold at least capacity
elements without
reallocating. This method is allowed to allocate for more elements than
capacity
. If capacity
is zero, the binary heap will not allocate.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::with_capacity(10);
heap.push(4);
Source§impl<T, A> BinaryHeap<T, A>
impl<T, A> BinaryHeap<T, A>
Sourcepub const fn new_in(alloc: A) -> BinaryHeap<T, A>
🔬This is a nightly-only experimental API. (allocator_api
)Available on crate feature alloc
only.
pub const fn new_in(alloc: A) -> BinaryHeap<T, A>
allocator_api
)alloc
only.Creates an empty BinaryHeap
as a max-heap, using A
as allocator.
§Examples
Basic usage:
#![feature(allocator_api)]
use std::alloc::System;
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new_in(System);
heap.push(4);
Sourcepub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap<T, A>
🔬This is a nightly-only experimental API. (allocator_api
)Available on crate feature alloc
only.
pub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap<T, A>
allocator_api
)alloc
only.Creates an empty BinaryHeap
with at least the specified capacity, using A
as allocator.
The binary heap will be able to hold at least capacity
elements without
reallocating. This method is allowed to allocate for more elements than
capacity
. If capacity
is zero, the binary heap will not allocate.
§Examples
Basic usage:
#![feature(allocator_api)]
use std::alloc::System;
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::with_capacity_in(10, System);
heap.push(4);
1.12.0 · Sourcepub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> ⓘ
Available on crate feature alloc
only.
pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> ⓘ
alloc
only.Returns a mutable reference to the greatest item in the binary heap, or
None
if it is empty.
Note: If the PeekMut
value is leaked, some heap elements might get
leaked along with it, but the remaining elements will remain a valid
heap.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
assert!(heap.peek_mut().is_none());
heap.push(1);
heap.push(5);
heap.push(2);
if let Some(mut val) = heap.peek_mut() {
*val = 0;
}
assert_eq!(heap.peek(), Some(&2));
§Time complexity
If the item is modified then the worst case time complexity is O(log(n)), otherwise it’s O(1).
1.0.0 · Sourcepub fn pop(&mut self) -> Option<T> ⓘ
Available on crate feature alloc
only.
pub fn pop(&mut self) -> Option<T> ⓘ
alloc
only.Removes the greatest item from the binary heap and returns it, or None
if it
is empty.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 3]);
assert_eq!(heap.pop(), Some(3));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
§Time complexity
The worst case cost of pop
on a heap containing n elements is O(log(n)).
1.0.0 · Sourcepub fn push(&mut self, item: T)
Available on crate feature alloc
only.
pub fn push(&mut self, item: T)
alloc
only.Pushes an item onto the binary heap.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.push(3);
heap.push(5);
heap.push(1);
assert_eq!(heap.len(), 3);
assert_eq!(heap.peek(), Some(&5));
§Time complexity
The expected cost of push
, averaged over every possible ordering of
the elements being pushed, and over a sufficiently large number of
pushes, is O(1). This is the most meaningful cost metric when pushing
elements that are not already in any sorted pattern.
The time complexity degrades if elements are pushed in predominantly ascending order. In the worst case, elements are pushed in ascending sorted order and the amortized cost per push is O(log(n)) against a heap containing n elements.
The worst case cost of a single call to push
is O(n). The worst case
occurs when capacity is exhausted and needs a resize. The resize cost
has been amortized in the previous figures.
1.5.0 · Sourcepub fn into_sorted_vec(self) -> Vec<T, A> ⓘ
Available on crate feature alloc
only.
pub fn into_sorted_vec(self) -> Vec<T, A> ⓘ
alloc
only.Consumes the BinaryHeap
and returns a vector in sorted
(ascending) order.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]);
heap.push(6);
heap.push(3);
let vec = heap.into_sorted_vec();
assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
1.11.0 · Sourcepub fn append(&mut self, other: &mut BinaryHeap<T, A>)
Available on crate feature alloc
only.
pub fn append(&mut self, other: &mut BinaryHeap<T, A>)
alloc
only.Moves all the elements of other
into self
, leaving other
empty.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]);
let mut b = BinaryHeap::from([-20, 5, 43]);
a.append(&mut b);
assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
assert!(b.is_empty());
Sourcepub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> ⓘ
🔬This is a nightly-only experimental API. (binary_heap_drain_sorted
)Available on crate feature alloc
only.
pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> ⓘ
binary_heap_drain_sorted
)alloc
only.Clears the binary heap, returning an iterator over the removed elements in heap order. If the iterator is dropped before being fully consumed, it drops the remaining elements in heap order.
The returned iterator keeps a mutable borrow on the heap to optimize its implementation.
Note:
.drain_sorted()
is O(n * log(n)); much slower than.drain()
. You should use the latter for most cases.
§Examples
Basic usage:
#![feature(binary_heap_drain_sorted)]
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]);
assert_eq!(heap.len(), 5);
drop(heap.drain_sorted()); // removes all elements in heap order
assert_eq!(heap.len(), 0);
1.70.0 · Sourcepub fn retain<F>(&mut self, f: F)
Available on crate feature alloc
only.
pub fn retain<F>(&mut self, f: F)
alloc
only.Retains only the elements specified by the predicate.
In other words, remove all elements e
for which f(&e)
returns
false
. The elements are visited in unsorted (and unspecified) order.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]);
heap.retain(|x| x % 2 == 0); // only keep even numbers
assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
Source§impl<T, A> BinaryHeap<T, A>where
A: Allocator,
impl<T, A> BinaryHeap<T, A>where
A: Allocator,
1.0.0 · Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
Available on crate feature alloc
only.
pub fn iter(&self) -> Iter<'_, T> ⓘ
alloc
only.Returns an iterator visiting all values in the underlying vector, in arbitrary order.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order
for x in heap.iter() {
println!("{x}");
}
Sourcepub fn into_iter_sorted(self) -> IntoIterSorted<T, A> ⓘ
🔬This is a nightly-only experimental API. (binary_heap_into_iter_sorted
)Available on crate feature alloc
only.
pub fn into_iter_sorted(self) -> IntoIterSorted<T, A> ⓘ
binary_heap_into_iter_sorted
)alloc
only.Returns an iterator which retrieves elements in heap order.
This method consumes the original heap.
§Examples
Basic usage:
#![feature(binary_heap_into_iter_sorted)]
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4, 5]);
assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]);
1.0.0 · Sourcepub fn peek(&self) -> Option<&T> ⓘ
Available on crate feature alloc
only.
pub fn peek(&self) -> Option<&T> ⓘ
alloc
only.Returns the greatest item in the binary heap, or None
if it is empty.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
assert_eq!(heap.peek(), None);
heap.push(1);
heap.push(5);
heap.push(2);
assert_eq!(heap.peek(), Some(&5));
§Time complexity
Cost is O(1) in the worst case.
1.0.0 · Sourcepub fn capacity(&self) -> usize ⓘ
Available on crate feature alloc
only.
pub fn capacity(&self) -> usize ⓘ
alloc
only.Returns the number of elements the binary heap can hold without reallocating.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.push(4);
1.0.0 · Sourcepub fn reserve_exact(&mut self, additional: usize)
Available on crate feature alloc
only.
pub fn reserve_exact(&mut self, additional: usize)
alloc
only.Reserves the minimum capacity for at least additional
elements more than
the current length. Unlike reserve
, this will not
deliberately over-allocate to speculatively avoid frequent allocations.
After calling reserve_exact
, capacity will be greater than or equal to
self.len() + additional
. Does nothing if the capacity is already
sufficient.
§Panics
Panics if the new capacity overflows usize
.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.reserve_exact(100);
assert!(heap.capacity() >= 100);
heap.push(4);
1.0.0 · Sourcepub fn reserve(&mut self, additional: usize)
Available on crate feature alloc
only.
pub fn reserve(&mut self, additional: usize)
alloc
only.Reserves capacity for at least additional
elements more than the
current length. The allocator may reserve more space to speculatively
avoid frequent allocations. After calling reserve
,
capacity will be greater than or equal to self.len() + additional
.
Does nothing if capacity is already sufficient.
§Panics
Panics if the new capacity overflows usize
.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
heap.reserve(100);
assert!(heap.capacity() >= 100);
heap.push(4);
1.63.0 · Sourcepub fn try_reserve_exact(
&mut self,
additional: usize,
) -> Result<(), TryReserveError> ⓘ
Available on crate feature alloc
only.
pub fn try_reserve_exact( &mut self, additional: usize, ) -> Result<(), TryReserveError> ⓘ
alloc
only.Tries to reserve the minimum capacity for at least additional
elements
more than the current length. Unlike try_reserve
, this will not
deliberately over-allocate to speculatively avoid frequent allocations.
After calling try_reserve_exact
, capacity will be greater than or
equal to self.len() + additional
if it returns Ok(())
.
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore, capacity can not be relied upon to be precisely
minimal. Prefer try_reserve
if future insertions are expected.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use std::collections::BinaryHeap;
use std::collections::TryReserveError;
fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
let mut heap = BinaryHeap::new();
// Pre-reserve the memory, exiting if we can't
heap.try_reserve_exact(data.len())?;
// Now we know this can't OOM in the middle of our complex work
heap.extend(data.iter());
Ok(heap.pop())
}
1.63.0 · Sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> ⓘ
Available on crate feature alloc
only.
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> ⓘ
alloc
only.Tries to reserve capacity for at least additional
elements more than the
current length. The allocator may reserve more space to speculatively
avoid frequent allocations. After calling try_reserve
, capacity will be
greater than or equal to self.len() + additional
if it returns
Ok(())
. Does nothing if capacity is already sufficient. This method
preserves the contents even if an error occurs.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use std::collections::BinaryHeap;
use std::collections::TryReserveError;
fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> {
let mut heap = BinaryHeap::new();
// Pre-reserve the memory, exiting if we can't
heap.try_reserve(data.len())?;
// Now we know this can't OOM in the middle of our complex work
heap.extend(data.iter());
Ok(heap.pop())
}
1.0.0 · Sourcepub fn shrink_to_fit(&mut self)
Available on crate feature alloc
only.
pub fn shrink_to_fit(&mut self)
alloc
only.Discards as much additional capacity as possible.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.shrink_to_fit();
assert!(heap.capacity() == 0);
1.56.0 · Sourcepub fn shrink_to(&mut self, min_capacity: usize)
Available on crate feature alloc
only.
pub fn shrink_to(&mut self, min_capacity: usize)
alloc
only.Discards capacity with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
If the current capacity is less than the lower limit, this is a no-op.
§Examples
use std::collections::BinaryHeap;
let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.shrink_to(10);
assert!(heap.capacity() >= 10);
1.80.0 · Sourcepub fn as_slice(&self) -> &[T] ⓘ
Available on crate feature alloc
only.
pub fn as_slice(&self) -> &[T] ⓘ
alloc
only.Returns a slice of all values in the underlying vector, in arbitrary order.
§Examples
Basic usage:
use std::collections::BinaryHeap;
use std::io::{self, Write};
let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
io::sink().write(heap.as_slice()).unwrap();
1.5.0 · Sourcepub fn into_vec(self) -> Vec<T, A> ⓘ
Available on crate feature alloc
only.
pub fn into_vec(self) -> Vec<T, A> ⓘ
alloc
only.Consumes the BinaryHeap
and returns the underlying vector
in arbitrary order.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]);
let vec = heap.into_vec();
// Will print in some order
for x in vec {
println!("{x}");
}
Sourcepub fn allocator(&self) -> &A
🔬This is a nightly-only experimental API. (allocator_api
)Available on crate feature alloc
only.
pub fn allocator(&self) -> &A
allocator_api
)alloc
only.Returns a reference to the underlying allocator.
1.0.0 · Sourcepub fn len(&self) -> usize ⓘ
Available on crate feature alloc
only.
pub fn len(&self) -> usize ⓘ
alloc
only.Returns the length of the binary heap.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 3]);
assert_eq!(heap.len(), 2);
1.0.0 · Sourcepub fn is_empty(&self) -> bool
Available on crate feature alloc
only.
pub fn is_empty(&self) -> bool
alloc
only.Checks if the binary heap is empty.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::new();
assert!(heap.is_empty());
heap.push(3);
heap.push(5);
heap.push(1);
assert!(!heap.is_empty());
1.6.0 · Sourcepub fn drain(&mut self) -> Drain<'_, T, A> ⓘ
Available on crate feature alloc
only.
pub fn drain(&mut self) -> Drain<'_, T, A> ⓘ
alloc
only.Clears the binary heap, returning an iterator over the removed elements in arbitrary order. If the iterator is dropped before being fully consumed, it drops the remaining elements in arbitrary order.
The returned iterator keeps a mutable borrow on the heap to optimize its implementation.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let mut heap = BinaryHeap::from([1, 3]);
assert!(!heap.is_empty());
for x in heap.drain() {
println!("{x}");
}
assert!(heap.is_empty());
Trait Implementations§
Source§impl<T> BitSized<{$PTR_BITS * 3}> for BinaryHeap<T>
impl<T> BitSized<{$PTR_BITS * 3}> for BinaryHeap<T>
Source§const BIT_SIZE: usize = _
const BIT_SIZE: usize = _
Source§const MIN_BYTE_SIZE: usize = _
const MIN_BYTE_SIZE: usize = _
1.0.0 · Source§impl<T, A> Clone for BinaryHeap<T, A>
impl<T, A> Clone for BinaryHeap<T, A>
Source§fn clone_from(&mut self, source: &BinaryHeap<T, A>)
fn clone_from(&mut self, source: &BinaryHeap<T, A>)
Overwrites the contents of self
with a clone of the contents of source
.
This method is preferred over simply assigning source.clone()
to self
,
as it avoids reallocation if possible.
See Vec::clone_from()
for more details.
Source§fn clone(&self) -> BinaryHeap<T, A>
fn clone(&self) -> BinaryHeap<T, A>
Source§impl<T> DataCollection for BinaryHeap<T>
impl<T> DataCollection for BinaryHeap<T>
Source§fn collection_contains(&self, _: Self::Element) -> Result<bool, NotAvailable> ⓘ
fn collection_contains(&self, _: Self::Element) -> Result<bool, NotAvailable> ⓘ
Returns [NotSupported
][E::NotSupported].
Source§fn collection_count(&self, _: &Self::Element) -> Result<usize, NotAvailable> ⓘ
fn collection_count(&self, _: &Self::Element) -> Result<usize, NotAvailable> ⓘ
Returns [NotSupported
][E::NotSupported].
Source§fn collection_capacity(&self) -> Result<usize, NotAvailable> ⓘ
fn collection_capacity(&self) -> Result<usize, NotAvailable> ⓘ
Source§fn collection_len(&self) -> Result<usize, NotAvailable> ⓘ
fn collection_len(&self) -> Result<usize, NotAvailable> ⓘ
Source§fn collection_is_empty(&self) -> Result<bool, NotAvailable> ⓘ
fn collection_is_empty(&self) -> Result<bool, NotAvailable> ⓘ
true
if the collection is empty, false
if it’s not.Source§fn collection_is_full(&self) -> Result<bool, NotAvailable> ⓘ
fn collection_is_full(&self) -> Result<bool, NotAvailable> ⓘ
true
if the collection is full, false
if it’s not.1.4.0 · Source§impl<T, A> Debug for BinaryHeap<T, A>
impl<T, A> Debug for BinaryHeap<T, A>
1.0.0 · Source§impl<T> Default for BinaryHeap<T>where
T: Ord,
impl<T> Default for BinaryHeap<T>where
T: Ord,
Source§fn default() -> BinaryHeap<T>
fn default() -> BinaryHeap<T>
Creates an empty BinaryHeap<T>
.
Source§impl<'de, T> Deserialize<'de> for BinaryHeap<T>where
T: Deserialize<'de> + Ord,
impl<'de, T> Deserialize<'de> for BinaryHeap<T>where
T: Deserialize<'de> + Ord,
Source§fn deserialize<D>(
deserializer: D,
) -> Result<BinaryHeap<T>, <D as Deserializer<'de>>::Error> ⓘwhere
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<BinaryHeap<T>, <D as Deserializer<'de>>::Error> ⓘwhere
D: Deserializer<'de>,
1.2.0 · Source§impl<'a, T, A> Extend<&'a T> for BinaryHeap<T, A>
impl<'a, T, A> Extend<&'a T> for BinaryHeap<T, A>
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,
Source§fn extend_one(&mut self, _: &'a T)
fn extend_one(&mut self, _: &'a T)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)1.0.0 · Source§impl<T, A> Extend<T> for BinaryHeap<T, A>
impl<T, A> Extend<T> for BinaryHeap<T, A>
Source§fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,
Source§fn extend_one(&mut self, item: T)
fn extend_one(&mut self, item: T)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)1.56.0 · Source§impl<T, const N: usize> From<[T; N]> for BinaryHeap<T>where
T: Ord,
impl<T, const N: usize> From<[T; N]> for BinaryHeap<T>where
T: Ord,
Source§fn from(arr: [T; N]) -> BinaryHeap<T>
fn from(arr: [T; N]) -> BinaryHeap<T>
use std::collections::BinaryHeap;
let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
while let Some((a, b)) = h1.pop().zip(h2.pop()) {
assert_eq!(a, b);
}
1.5.0 · Source§impl<T, A> From<Vec<T, A>> for BinaryHeap<T, A>
impl<T, A> From<Vec<T, A>> for BinaryHeap<T, A>
Source§fn from(vec: Vec<T, A>) -> BinaryHeap<T, A>
fn from(vec: Vec<T, A>) -> BinaryHeap<T, A>
Converts a Vec<T>
into a BinaryHeap<T>
.
This conversion happens in-place, and has O(n) time complexity.
1.0.0 · Source§impl<T> FromIterator<T> for BinaryHeap<T>where
T: Ord,
impl<T> FromIterator<T> for BinaryHeap<T>where
T: Ord,
Source§fn from_iter<I>(iter: I) -> BinaryHeap<T>where
I: IntoIterator<Item = T>,
fn from_iter<I>(iter: I) -> BinaryHeap<T>where
I: IntoIterator<Item = T>,
§impl<T> FromParallelIterator<T> for BinaryHeap<T>
Collects items from a parallel iterator into a binaryheap.
The heap-ordering is calculated serially after all items are collected.
impl<T> FromParallelIterator<T> for BinaryHeap<T>
Collects items from a parallel iterator into a binaryheap. The heap-ordering is calculated serially after all items are collected.
§fn from_par_iter<I>(par_iter: I) -> BinaryHeap<T>where
I: IntoParallelIterator<Item = T>,
fn from_par_iter<I>(par_iter: I) -> BinaryHeap<T>where
I: IntoParallelIterator<Item = T>,
par_iter
. Read more1.0.0 · Source§impl<'a, T, A> IntoIterator for &'a BinaryHeap<T, A>where
A: Allocator,
impl<'a, T, A> IntoIterator for &'a BinaryHeap<T, A>where
A: Allocator,
1.0.0 · Source§impl<T, A> IntoIterator for BinaryHeap<T, A>where
A: Allocator,
impl<T, A> IntoIterator for BinaryHeap<T, A>where
A: Allocator,
Source§fn into_iter(self) -> IntoIter<T, A> ⓘ
fn into_iter(self) -> IntoIter<T, A> ⓘ
Creates a consuming iterator, that is, one that moves each value out of the binary heap in arbitrary order. The binary heap cannot be used after calling this.
§Examples
Basic usage:
use std::collections::BinaryHeap;
let heap = BinaryHeap::from([1, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order
for x in heap.into_iter() {
// x has type i32, not &i32
println!("{x}");
}
§impl<'a, T> IntoParallelIterator for &'a BinaryHeap<T>
impl<'a, T> IntoParallelIterator for &'a BinaryHeap<T>
§type Item = <&'a BinaryHeap<T> as IntoIterator>::Item
type Item = <&'a BinaryHeap<T> as IntoIterator>::Item
§fn into_par_iter(self) -> <&'a BinaryHeap<T> as IntoParallelIterator>::Iter
fn into_par_iter(self) -> <&'a BinaryHeap<T> as IntoParallelIterator>::Iter
self
into a parallel iterator. Read more§impl<T> IntoParallelIterator for BinaryHeap<T>
impl<T> IntoParallelIterator for BinaryHeap<T>
§fn into_par_iter(self) -> <BinaryHeap<T> as IntoParallelIterator>::Iter
fn into_par_iter(self) -> <BinaryHeap<T> as IntoParallelIterator>::Iter
self
into a parallel iterator. Read more§impl<'a, T> ParallelDrainFull for &'a mut BinaryHeap<T>
impl<'a, T> ParallelDrainFull for &'a mut BinaryHeap<T>
§type Item = T
type Item = T
IntoParallelIterator::Item
.§fn par_drain(self) -> <&'a mut BinaryHeap<T> as ParallelDrainFull>::Iter
fn par_drain(self) -> <&'a mut BinaryHeap<T> as ParallelDrainFull>::Iter
§impl<'a, T> ParallelExtend<&'a T> for BinaryHeap<T>
Extends a binary heap with copied items from a parallel iterator.
impl<'a, T> ParallelExtend<&'a T> for BinaryHeap<T>
Extends a binary heap with copied items from a parallel iterator.
§fn par_extend<I>(&mut self, par_iter: I)where
I: IntoParallelIterator<Item = &'a T>,
fn par_extend<I>(&mut self, par_iter: I)where
I: IntoParallelIterator<Item = &'a T>,
par_iter
. Read more§impl<T> ParallelExtend<T> for BinaryHeap<T>
Extends a binary heap with items from a parallel iterator.
impl<T> ParallelExtend<T> for BinaryHeap<T>
Extends a binary heap with items from a parallel iterator.
§fn par_extend<I>(&mut self, par_iter: I)where
I: IntoParallelIterator<Item = T>,
fn par_extend<I>(&mut self, par_iter: I)where
I: IntoParallelIterator<Item = T>,
par_iter
. Read moreSource§impl<T> Serialize for BinaryHeap<T>where
T: Serialize,
impl<T> Serialize for BinaryHeap<T>where
T: Serialize,
Source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> ⓘwhere
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> ⓘwhere
S: Serializer,
Auto Trait Implementations§
impl<T, A> Freeze for BinaryHeap<T, A>where
A: Freeze,
impl<T, A> RefUnwindSafe for BinaryHeap<T, A>where
A: RefUnwindSafe,
T: RefUnwindSafe,
impl<T, A> Send for BinaryHeap<T, A>
impl<T, A> Sync for BinaryHeap<T, A>
impl<T, A> Unpin for BinaryHeap<T, A>
impl<T, A> UnwindSafe for BinaryHeap<T, A>where
A: UnwindSafe,
T: UnwindSafe,
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<'data, I> IntoParallelRefIterator<'data> for I
impl<'data, I> IntoParallelRefIterator<'data> for I
§type Iter = <&'data I as IntoParallelIterator>::Iter
type Iter = <&'data I as IntoParallelIterator>::Iter
§type Item = <&'data I as IntoParallelIterator>::Item
type Item = <&'data I as IntoParallelIterator>::Item
&'data T
reference type.§fn par_iter(&'data self) -> <I as IntoParallelRefIterator<'data>>::Iter
fn par_iter(&'data self) -> <I as IntoParallelRefIterator<'data>>::Iter
self
into a parallel iterator. Read more§impl<'py, T, I> IntoPyDict<'py> for Iwhere
T: PyDictItem<'py>,
I: IntoIterator<Item = T>,
impl<'py, T, I> IntoPyDict<'py> for Iwhere
T: PyDictItem<'py>,
I: IntoIterator<Item = T>,
§fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr> ⓘ
fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr> ⓘ
PyDict
object pointer. Whether pointer owned or borrowed
depends on implementation.§fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>
fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>
IntoPyDict::into_py_dict
IntoPyDict::into_py_dict
.§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.