devela::_core::sync::atomic

Struct AtomicI64

1.34.0 · Source
#[repr(C, align(8))]
pub struct AtomicI64 { /* private fields */ }
Expand description

An integer type which can be safely shared between threads.

This type has the same size and bit validity as the underlying integer type, i64. However, the alignment of this type is always equal to its size, even on targets where i64 has a lesser alignment.

For more about the differences between atomic types and non-atomic types as well as information about the portability of this type, please see the module-level documentation.

Note: This type is only available on platforms that support atomic loads and stores of i64.

Implementations§

Source§

impl AtomicI64

1.34.0 (const: 1.34.0) · Source

pub const fn new(v: i64) -> AtomicI64

Available on crate feature std only.

Creates a new atomic integer.

§Examples
use std::sync::atomic::AtomicI64;

let atomic_forty_two = AtomicI64::new(42);
1.75.0 (const: 1.84.0) · Source

pub const unsafe fn from_ptr<'a>(ptr: *mut i64) -> &'a AtomicI64

Available on crate feature std only.

Creates a new reference to an atomic integer from a pointer.

§Examples
use std::sync::atomic::{self, AtomicI64};

// Get a pointer to an allocated value
let ptr: *mut i64 = Box::into_raw(Box::new(0));

assert!(ptr.cast::<AtomicI64>().is_aligned());

{
    // Create an atomic view of the allocated value
    let atomic = unsafe {AtomicI64::from_ptr(ptr) };

    // Use `atomic` for atomic operations, possibly share it with other threads
    atomic.store(1, atomic::Ordering::Relaxed);
}

// It's ok to non-atomically access the value behind `ptr`,
// since the reference to the atomic ended its lifetime in the block above
assert_eq!(unsafe { *ptr }, 1);

// Deallocate the value
unsafe { drop(Box::from_raw(ptr)) }
§Safety
  • ptr must be aligned to align_of::<AtomicI64>() (note that on some platforms this can be bigger than align_of::<i64>()).
  • ptr must be valid for both reads and writes for the whole lifetime 'a.
  • You must adhere to the Memory model for atomic accesses. In particular, it is not allowed to mix atomic and non-atomic accesses, or atomic accesses of different sizes, without synchronization.
1.34.0 · Source

pub fn get_mut(&mut self) -> &mut i64

Available on crate feature std only.

Returns a mutable reference to the underlying integer.

This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let mut some_var = AtomicI64::new(10);
assert_eq!(*some_var.get_mut(), 10);
*some_var.get_mut() = 5;
assert_eq!(some_var.load(Ordering::SeqCst), 5);
Source

pub fn from_mut(v: &mut i64) -> &mut AtomicI64

🔬This is a nightly-only experimental API. (atomic_from_mut)
Available on crate feature std only.

Get atomic access to a &mut i64.

Note: This function is only available on targets where i64 has an alignment of 8 bytes.

§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicI64, Ordering};

let mut some_int = 123;
let a = AtomicI64::from_mut(&mut some_int);
a.store(100, Ordering::Relaxed);
assert_eq!(some_int, 100);
Source

pub fn get_mut_slice(this: &mut [AtomicI64]) -> &mut [i64]

🔬This is a nightly-only experimental API. (atomic_from_mut)
Available on crate feature std only.

Get non-atomic access to a &mut [AtomicI64] slice

This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.

§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicI64, Ordering};

let mut some_ints = [const { AtomicI64::new(0) }; 10];

let view: &mut [i64] = AtomicI64::get_mut_slice(&mut some_ints);
assert_eq!(view, [0; 10]);
view
    .iter_mut()
    .enumerate()
    .for_each(|(idx, int)| *int = idx as _);

std::thread::scope(|s| {
    some_ints
        .iter()
        .enumerate()
        .for_each(|(idx, int)| {
            s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
        })
});
Source

pub fn from_mut_slice(v: &mut [i64]) -> &mut [AtomicI64]

🔬This is a nightly-only experimental API. (atomic_from_mut)
Available on crate feature std only.

Get atomic access to a &mut [i64] slice.

§Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicI64, Ordering};

let mut some_ints = [0; 10];
let a = &*AtomicI64::from_mut_slice(&mut some_ints);
std::thread::scope(|s| {
    for i in 0..a.len() {
        s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
    }
});
for (i, n) in some_ints.into_iter().enumerate() {
    assert_eq!(i, n as usize);
}
1.34.0 (const: 1.79.0) · Source

pub const fn into_inner(self) -> i64

Available on crate feature std only.

Consumes the atomic and returns the contained value.

This is safe because passing self by value guarantees that no other threads are concurrently accessing the atomic data.

§Examples
use std::sync::atomic::AtomicI64;

let some_var = AtomicI64::new(5);
assert_eq!(some_var.into_inner(), 5);
1.34.0 · Source

pub fn load(&self, order: Ordering) -> i64

Available on crate feature std only.

Loads a value from the atomic integer.

load takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Acquire and Relaxed.

§Panics

Panics if order is Release or AcqRel.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let some_var = AtomicI64::new(5);

assert_eq!(some_var.load(Ordering::Relaxed), 5);
1.34.0 · Source

pub fn store(&self, val: i64, order: Ordering)

Available on crate feature std only.

Stores a value into the atomic integer.

store takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Release and Relaxed.

§Panics

Panics if order is Acquire or AcqRel.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let some_var = AtomicI64::new(5);

some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Source

pub fn swap(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Stores a value into the atomic integer, returning the previous value.

swap takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let some_var = AtomicI64::new(5);

assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
1.34.0 · Source

pub fn compare_and_swap(&self, current: i64, new: i64, order: Ordering) -> i64

👎Deprecated since 1.50.0: Use compare_exchange or compare_exchange_weak instead
Available on crate feature std only.

Stores a value into the atomic integer if the current value is the same as the current value.

The return value is always the previous value. If it is equal to current, then the value was updated.

compare_and_swap also takes an Ordering argument which describes the memory ordering of this operation. Notice that even when using AcqRel, the operation might fail and hence just perform an Acquire load, but not have Release semantics. Using Acquire makes the store part of this operation Relaxed if it happens, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Migrating to compare_exchange and compare_exchange_weak

compare_and_swap is equivalent to compare_exchange with the following mapping for memory orderings:

OriginalSuccessFailure
RelaxedRelaxedRelaxed
AcquireAcquireAcquire
ReleaseReleaseRelaxed
AcqRelAcqRelAcquire
SeqCstSeqCstSeqCst

compare_exchange_weak is allowed to fail spuriously even when the comparison succeeds, which allows the compiler to generate better assembly code when the compare and swap is used in a loop.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let some_var = AtomicI64::new(5);

assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
assert_eq!(some_var.load(Ordering::Relaxed), 10);

assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Source

pub fn compare_exchange( &self, current: i64, new: i64, success: Ordering, failure: Ordering, ) -> Result<i64, i64>

Available on crate feature std only.

Stores a value into the atomic integer if the current value is the same as the current value.

The return value is a result indicating whether the new value was written and containing the previous value. On success this value is guaranteed to be equal to current.

compare_exchange takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let some_var = AtomicI64::new(5);

assert_eq!(some_var.compare_exchange(5, 10,
                                     Ordering::Acquire,
                                     Ordering::Relaxed),
           Ok(5));
assert_eq!(some_var.load(Ordering::Relaxed), 10);

assert_eq!(some_var.compare_exchange(6, 12,
                                     Ordering::SeqCst,
                                     Ordering::Acquire),
           Err(10));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Source

pub fn compare_exchange_weak( &self, current: i64, new: i64, success: Ordering, failure: Ordering, ) -> Result<i64, i64>

Available on crate feature std only.

Stores a value into the atomic integer if the current value is the same as the current value.

Unlike AtomicI64::compare_exchange, this function is allowed to spuriously fail even when the comparison succeeds, which can result in more efficient code on some platforms. The return value is a result indicating whether the new value was written and containing the previous value.

compare_exchange_weak takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let val = AtomicI64::new(4);

let mut old = val.load(Ordering::Relaxed);
loop {
    let new = old * 2;
    match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
        Ok(_) => break,
        Err(x) => old = x,
    }
}
1.34.0 · Source

pub fn fetch_add(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Adds to the current value, returning the previous value.

This operation wraps around on overflow.

fetch_add takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(0);
assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
assert_eq!(foo.load(Ordering::SeqCst), 10);
1.34.0 · Source

pub fn fetch_sub(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Subtracts from the current value, returning the previous value.

This operation wraps around on overflow.

fetch_sub takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(20);
assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
assert_eq!(foo.load(Ordering::SeqCst), 10);
1.34.0 · Source

pub fn fetch_and(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Bitwise “and” with the current value.

Performs a bitwise “and” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_and takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(0b101101);
assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
1.34.0 · Source

pub fn fetch_nand(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Bitwise “nand” with the current value.

Performs a bitwise “nand” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_nand takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(0x13);
assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
1.34.0 · Source

pub fn fetch_or(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Bitwise “or” with the current value.

Performs a bitwise “or” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_or takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(0b101101);
assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
1.34.0 · Source

pub fn fetch_xor(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Bitwise “xor” with the current value.

Performs a bitwise “xor” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_xor takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(0b101101);
assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
1.45.0 · Source

pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<i64, i64>
where F: FnMut(i64) -> Option<i64>,

Available on crate feature std only.

Fetches the value, and applies a function to it that returns an optional new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else Err(previous_value).

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_), but the function will have been applied only once to the stored value.

fetch_update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicI64::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Considerations

This method is not magic; it is not provided by the hardware. It is implemented in terms of AtomicI64::compare_exchange_weak, and suffers from the same drawbacks. In particular, this method will not circumvent the ABA Problem.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let x = AtomicI64::new(7);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);
1.45.0 · Source

pub fn fetch_max(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Maximum with the current value.

Finds the maximum of the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_max takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(23);
assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
assert_eq!(foo.load(Ordering::SeqCst), 42);

If you want to obtain the maximum value in one step, you can use the following:

use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(23);
let bar = 42;
let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
assert!(max_foo == 42);
1.45.0 · Source

pub fn fetch_min(&self, val: i64, order: Ordering) -> i64

Available on crate feature std only.

Minimum with the current value.

Finds the minimum of the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_min takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on i64.

§Examples
use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(23);
assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 23);
assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 22);

If you want to obtain the minimum value in one step, you can use the following:

use std::sync::atomic::{AtomicI64, Ordering};

let foo = AtomicI64::new(23);
let bar = 12;
let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
assert_eq!(min_foo, 12);
1.70.0 (const: 1.70.0) · Source

pub const fn as_ptr(&self) -> *mut i64

Available on crate feature std only.

Returns a mutable pointer to the underlying integer.

Doing non-atomic reads and writes on the resulting integer can be a data race. This method is mostly useful for FFI, where the function signature may use *mut i64 instead of &AtomicI64.

Returning an *mut pointer from a shared reference to this atomic is safe because the atomic types work with interior mutability. All modifications of an atomic change the value through a shared reference, and can do so safely as long as they use atomic operations. Any use of the returned raw pointer requires an unsafe block and still has to uphold the same restriction: operations on it must be atomic.

§Examples
use std::sync::atomic::AtomicI64;

extern "C" {
    fn my_atomic_op(arg: *mut i64);
}

let atomic = AtomicI64::new(1);

// SAFETY: Safe as long as `my_atomic_op` is atomic.
unsafe {
    my_atomic_op(atomic.as_ptr());
}

Trait Implementations§

§

impl<SO> ArchiveWith<AtomicI64> for AtomicLoad<SO>
where SO: LoadOrdering,

§

type Archived = i64_le

The archived type of Self with F.
§

type Resolver = ()

The resolver of a Self with F.
§

fn resolve_with( field: &AtomicI64, _: <AtomicLoad<SO> as ArchiveWith<AtomicI64>>::Resolver, out: Place<<AtomicLoad<SO> as ArchiveWith<AtomicI64>>::Archived>, )

Resolves the archived type using a reference to the field type F.
§

impl AtomicConsume for AtomicI64

§

type Val = i64

Type returned by load_consume.
§

fn load_consume(&self) -> <AtomicI64 as AtomicConsume>::Val

Loads a value from the atomic using a “consume” memory ordering. Read more
§

impl<C> CheckBytes<C> for AtomicI64
where C: Fallible + ?Sized,

§

unsafe fn check_bytes( _: *const AtomicI64, _: &mut C, ) -> Result<(), <C as Fallible>::Error>

Checks whether the given pointer points to a valid value within the given context. Read more
1.34.0 · Source§

impl Debug for AtomicI64

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.34.0 · Source§

impl Default for AtomicI64

Source§

fn default() -> AtomicI64

Returns the “default value” for a type. Read more
Source§

impl<'de> Deserialize<'de> for AtomicI64

Source§

fn deserialize<D>( deserializer: D, ) -> Result<AtomicI64, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl<D, SO> DeserializeWith<i64_le, AtomicI64, D> for AtomicLoad<SO>
where D: Fallible + ?Sized,

§

fn deserialize_with( field: &i64_le, _: &mut D, ) -> Result<AtomicI64, <D as Fallible>::Error>

Deserializes the field type F using the given deserializer.
1.34.0 · Source§

impl From<i64> for AtomicI64

Source§

fn from(v: i64) -> AtomicI64

Converts an i64 into an AtomicI64.

Source§

impl Serialize for AtomicI64

Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl<S, SO> SerializeWith<AtomicI64, S> for AtomicLoad<SO>
where S: Fallible + ?Sized, SO: LoadOrdering,

§

fn serialize_with( _: &AtomicI64, _: &mut S, ) -> Result<<AtomicLoad<SO> as ArchiveWith<AtomicI64>>::Resolver, <S as Fallible>::Error>

Serializes the field type F using the given serializer.
§

impl Zeroable for AtomicI64

§

fn zeroed() -> Self

1.34.0 · Source§

impl RefUnwindSafe for AtomicI64

1.34.0 · Source§

impl Sync for AtomicI64

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T> ArchivePointee for T

§

type ArchivedMetadata = ()

The archived version of the pointer metadata for this type.
§

fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata

Converts some archived metadata to the pointer metadata for itself.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> ByteSized for T

Source§

const BYTE_ALIGN: usize = _

The alignment of this type in bytes.
Source§

const BYTE_SIZE: usize = _

The size of this type in bytes.
Source§

fn byte_align(&self) -> usize

Returns the alignment of this type in bytes.
Source§

fn byte_size(&self) -> usize

Returns the size of this type in bytes. Read more
Source§

fn ptr_size_ratio(&self) -> [usize; 2]

Returns the size ratio between Ptr::BYTES and BYTE_SIZE. Read more
Source§

impl<T, R> Chain<R> for T
where T: ?Sized,

Source§

fn chain<F>(self, f: F) -> R
where F: FnOnce(Self) -> R, Self: Sized,

Chain a function which takes the parameter by value.
Source§

fn chain_ref<F>(&self, f: F) -> R
where F: FnOnce(&Self) -> R,

Chain a function which takes the parameter by shared reference.
Source§

fn chain_mut<F>(&mut self, f: F) -> R
where F: FnOnce(&mut Self) -> R,

Chain a function which takes the parameter by exclusive reference.
Source§

impl<T> ExtAny for T
where T: Any + ?Sized,

Source§

fn type_id() -> TypeId

Returns the TypeId of Self. Read more
Source§

fn type_of(&self) -> TypeId

Returns the TypeId of self. Read more
Source§

fn type_name(&self) -> &'static str

Returns the type name of self. Read more
Source§

fn type_is<T: 'static>(&self) -> bool

Returns true if Self is of type T. Read more
Source§

fn as_any_ref(&self) -> &dyn Any
where Self: Sized,

Upcasts &self as &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any
where Self: Sized,

Upcasts &mut self as &mut dyn Any. Read more
Source§

fn as_any_box(self: Box<Self>) -> Box<dyn Any>
where Self: Sized,

Upcasts Box<self> as Box<dyn Any>. Read more
Source§

fn downcast_ref<T: 'static>(&self) -> Option<&T>

Available on crate feature unsafe_layout only.
Returns some shared reference to the inner value if it is of type T. Read more
Source§

fn downcast_mut<T: 'static>(&mut self) -> Option<&mut T>

Available on crate feature unsafe_layout only.
Returns some exclusive reference to the inner value if it is of type T. Read more
Source§

impl<T> ExtMem for T
where T: ?Sized,

Source§

const NEEDS_DROP: bool = _

Know whether dropping values of this type matters, in compile-time.
Source§

fn mem_align_of<T>() -> usize

Returns the minimum alignment of the type in bytes. Read more
Source§

fn mem_align_of_val(&self) -> usize

Returns the alignment of the pointed-to value in bytes. Read more
Source§

fn mem_size_of<T>() -> usize

Returns the size of a type in bytes. Read more
Source§

fn mem_size_of_val(&self) -> usize

Returns the size of the pointed-to value in bytes. Read more
Source§

fn mem_copy(&self) -> Self
where Self: Copy,

Bitwise-copies a value. Read more
Source§

fn mem_needs_drop(&self) -> bool

Returns true if dropping values of this type matters. Read more
Source§

fn mem_drop(self)
where Self: Sized,

Drops self by running its destructor. Read more
Source§

fn mem_forget(self)
where Self: Sized,

Forgets about self without running its destructor. Read more
Source§

fn mem_replace(&mut self, other: Self) -> Self
where Self: Sized,

Replaces self with other, returning the previous value of self. Read more
Source§

fn mem_take(&mut self) -> Self
where Self: Default,

Replaces self with its default value, returning the previous value of self. Read more
Source§

fn mem_swap(&mut self, other: &mut Self)
where Self: Sized,

Swaps the value of self and other without deinitializing either one. Read more
Source§

unsafe fn mem_zeroed<T>() -> T

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst

Available on crate feature unsafe_layout only.
Returns the value of type T represented by the all-zero byte-pattern. Read more
Source§

fn mem_as_bytes(&self) -> &[u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &[u8]. Read more
Source§

fn mem_as_bytes_mut(&mut self) -> &mut [u8]
where Self: Sync + Unpin,

Available on crate feature unsafe_slice only.
View a Sync + Unpin self as &mut [u8]. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

Source§

impl<T> Hook for T

Source§

fn hook_ref<F>(self, f: F) -> Self
where F: FnOnce(&Self),

Applies a function which takes the parameter by shared reference, and then returns the (possibly) modified owned value. Read more
Source§

fn hook_mut<F>(self, f: F) -> Self
where F: FnOnce(&mut Self),

Applies a function which takes the parameter by exclusive reference, and then returns the (possibly) modified owned value. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> LayoutRaw for T

§

fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>

Returns the layout of the type.
§

impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
where T: SharedNiching<N1, N2>, N1: Niching<T>, N2: Niching<T>,

§

unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool

Returns whether the given value has been niched. Read more
§

fn resolve_niched(out: Place<NichedOption<T, N1>>)

Writes data to out indicating that a T is niched.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Metadata = ()

The metadata type for pointers and references to this type.
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Ungil for T
where T: Send,