pub struct Ipv4Addr { /* private fields */ }
Expand description
An IPv4 address.
IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.
See IpAddr
for a type encompassing both IPv4 and IPv6 addresses.
§Textual representation
Ipv4Addr
provides a FromStr
implementation. The four octets are in decimal
notation, divided by .
(this is called “dot-decimal notation”).
Notably, octal numbers (which are indicated with a leading 0
) and hexadecimal numbers (which
are indicated with a leading 0x
) are not allowed per IETF RFC 6943.
§Examples
use std::net::Ipv4Addr;
let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!("127.0.0.1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);
assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
Implementations§
Source§impl Ipv4Addr
impl Ipv4Addr
1.80.0 · Sourcepub const BITS: u32 = 32u32
Available on crate feature std
only.
pub const BITS: u32 = 32u32
std
only.The size of an IPv4 address in bits.
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::BITS, 32);
1.30.0 · Sourcepub const LOCALHOST: Ipv4Addr
Available on crate feature std
only.
pub const LOCALHOST: Ipv4Addr
std
only.An IPv4 address with the address pointing to localhost: 127.0.0.1
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::LOCALHOST;
assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
1.30.0 · Sourcepub const UNSPECIFIED: Ipv4Addr
Available on crate feature std
only.
pub const UNSPECIFIED: Ipv4Addr
std
only.An IPv4 address representing an unspecified address: 0.0.0.0
This corresponds to the constant INADDR_ANY
in other languages.
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::UNSPECIFIED;
assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
1.30.0 · Sourcepub const BROADCAST: Ipv4Addr
Available on crate feature std
only.
pub const BROADCAST: Ipv4Addr
std
only.An IPv4 address representing the broadcast address: 255.255.255.255
.
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::BROADCAST;
assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
1.0.0 (const: 1.32.0) · Sourcepub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr
Available on crate feature std
only.
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr
std
only.Creates a new IPv4 address from four eight-bit octets.
The result will represent the IP address a
.b
.c
.d
.
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::new(127, 0, 0, 1);
1.80.0 (const: 1.80.0) · Sourcepub const fn to_bits(self) -> u32 ⓘ
Available on crate feature std
only.
pub const fn to_bits(self) -> u32 ⓘ
std
only.Converts an IPv4 address into a u32
representation using native byte order.
Although IPv4 addresses are big-endian, the u32
value will use the target platform’s
native byte order. That is, the u32
value is an integer representation of the IPv4
address and not an integer interpretation of the IPv4 address’s big-endian bitstring. This
means that the u32
value masked with 0xffffff00
will set the last octet in the address
to 0, regardless of the target platform’s endianness.
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
assert_eq!(0x12345678, addr.to_bits());
use std::net::Ipv4Addr;
let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
let addr_bits = addr.to_bits() & 0xffffff00;
assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits));
1.80.0 (const: 1.80.0) · Sourcepub const fn from_bits(bits: u32) -> Ipv4Addr
Available on crate feature std
only.
pub const fn from_bits(bits: u32) -> Ipv4Addr
std
only.Converts a native byte order u32
into an IPv4 address.
See Ipv4Addr::to_bits
for an explanation on endianness.
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::from_bits(0x12345678);
assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
1.0.0 (const: 1.50.0) · Sourcepub const fn octets(&self) -> [u8; 4]
Available on crate feature std
only.
pub const fn octets(&self) -> [u8; 4]
std
only.Returns the four eight-bit integers that make up this address.
§Examples
use std::net::Ipv4Addr;
let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(addr.octets(), [127, 0, 0, 1]);
Sourcepub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr
🔬This is a nightly-only experimental API. (ip_from
)Available on crate feature std
only.
pub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr
ip_from
)std
only.Creates an Ipv4Addr
from a four element byte array.
§Examples
#![feature(ip_from)]
use std::net::Ipv4Addr;
let addr = Ipv4Addr::from_octets([13u8, 12u8, 11u8, 10u8]);
assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1.12.0 (const: 1.32.0) · Sourcepub const fn is_unspecified(&self) -> bool
Available on crate feature std
only.
pub const fn is_unspecified(&self) -> bool
std
only.Returns true
for the special ‘unspecified’ address (0.0.0.0
).
This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
1.7.0 (const: 1.50.0) · Sourcepub const fn is_loopback(&self) -> bool
Available on crate feature std
only.
pub const fn is_loopback(&self) -> bool
std
only.Returns true
if this is a loopback address (127.0.0.0/8
).
This property is defined by IETF RFC 1122.
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
1.7.0 (const: 1.50.0) · Sourcepub const fn is_private(&self) -> bool
Available on crate feature std
only.
pub const fn is_private(&self) -> bool
std
only.Returns true
if this is a private address.
The private address ranges are defined in IETF RFC 1918 and include:
10.0.0.0/8
172.16.0.0/12
192.168.0.0/16
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
1.7.0 (const: 1.50.0) · Sourcepub const fn is_link_local(&self) -> bool
Available on crate feature std
only.
pub const fn is_link_local(&self) -> bool
std
only.Returns true
if the address is link-local (169.254.0.0/16
).
This property is defined by IETF RFC 3927.
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
Sourcepub const fn is_global(&self) -> bool
🔬This is a nightly-only experimental API. (ip
)Available on crate feature std
only.
pub const fn is_global(&self) -> bool
ip
)std
only.Returns true
if the address appears to be globally reachable
as specified by the IANA IPv4 Special-Purpose Address Registry.
Whether or not an address is practically reachable will depend on your network configuration. Most IPv4 addresses are globally reachable, unless they are specifically defined as not globally reachable.
Non-exhaustive list of notable addresses that are not globally reachable:
- The unspecified address (
is_unspecified
) - Addresses reserved for private use (
is_private
) - Addresses in the shared address space (
is_shared
) - Loopback addresses (
is_loopback
) - Link-local addresses (
is_link_local
) - Addresses reserved for documentation (
is_documentation
) - Addresses reserved for benchmarking (
is_benchmarking
) - Reserved addresses (
is_reserved
) - The broadcast address (
is_broadcast
)
For the complete overview of which addresses are globally reachable, see the table at the IANA IPv4 Special-Purpose Address Registry.
§Examples
#![feature(ip)]
use std::net::Ipv4Addr;
// Most IPv4 addresses are globally reachable:
assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
// However some addresses have been assigned a special meaning
// that makes them not globally reachable. Some examples are:
// The unspecified address (`0.0.0.0`)
assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
// Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
// Addresses in the shared address space (`100.64.0.0/10`)
assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
// The loopback addresses (`127.0.0.0/8`)
assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
// Link-local addresses (`169.254.0.0/16`)
assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
// Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
// Addresses reserved for benchmarking (`198.18.0.0/15`)
assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
// Reserved addresses (`240.0.0.0/4`)
assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
// The broadcast address (`255.255.255.255`)
assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
// For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
🔬This is a nightly-only experimental API. (ip
)Available on crate feature std
only.
ip
)std
only.Returns true
if this address is part of the Shared Address Space defined in
IETF RFC 6598 (100.64.0.0/10
).
§Examples
#![feature(ip)]
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
Sourcepub const fn is_benchmarking(&self) -> bool
🔬This is a nightly-only experimental API. (ip
)Available on crate feature std
only.
pub const fn is_benchmarking(&self) -> bool
ip
)std
only.Returns true
if this address part of the 198.18.0.0/15
range, which is reserved for
network devices benchmarking.
This range is defined in IETF RFC 2544 as 192.18.0.0
through
198.19.255.255
but errata 423 corrects it to 198.18.0.0/15
.
§Examples
#![feature(ip)]
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
Sourcepub const fn is_reserved(&self) -> bool
🔬This is a nightly-only experimental API. (ip
)Available on crate feature std
only.
pub const fn is_reserved(&self) -> bool
ip
)std
only.Returns true
if this address is reserved by IANA for future use.
IETF RFC 1112 defines the block of reserved addresses as 240.0.0.0/4
.
This range normally includes the broadcast address 255.255.255.255
, but
this implementation explicitly excludes it, since it is obviously not
reserved for future use.
§Warning
As IANA assigns new addresses, this method will be updated. This may result in non-reserved addresses being treated as reserved in code that relies on an outdated version of this method.
§Examples
#![feature(ip)]
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
// The broadcast address is not considered as reserved for future use by this implementation
assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
1.7.0 (const: 1.50.0) · Sourcepub const fn is_multicast(&self) -> bool
Available on crate feature std
only.
pub const fn is_multicast(&self) -> bool
std
only.Returns true
if this is a multicast address (224.0.0.0/4
).
Multicast addresses have a most significant octet between 224
and 239
,
and is defined by IETF RFC 5771.
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
1.7.0 (const: 1.50.0) · Sourcepub const fn is_broadcast(&self) -> bool
Available on crate feature std
only.
pub const fn is_broadcast(&self) -> bool
std
only.Returns true
if this is a broadcast address (255.255.255.255
).
A broadcast address has all octets set to 255
as defined in IETF RFC 919.
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
1.7.0 (const: 1.50.0) · Sourcepub const fn is_documentation(&self) -> bool
Available on crate feature std
only.
pub const fn is_documentation(&self) -> bool
std
only.Returns true
if this address is in a range designated for documentation.
This is defined in IETF RFC 5737:
192.0.2.0/24
(TEST-NET-1)198.51.100.0/24
(TEST-NET-2)203.0.113.0/24
(TEST-NET-3)
§Examples
use std::net::Ipv4Addr;
assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
1.0.0 (const: 1.50.0) · Sourcepub const fn to_ipv6_compatible(&self) -> Ipv6Addr
Available on crate feature std
only.
pub const fn to_ipv6_compatible(&self) -> Ipv6Addr
std
only.Converts this address to an IPv4-compatible IPv6
address.
a.b.c.d
becomes ::a.b.c.d
Note that IPv4-compatible addresses have been officially deprecated.
If you don’t explicitly need an IPv4-compatible address for legacy reasons, consider using to_ipv6_mapped
instead.
§Examples
use std::net::{Ipv4Addr, Ipv6Addr};
assert_eq!(
Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
);
1.0.0 (const: 1.50.0) · Sourcepub const fn to_ipv6_mapped(&self) -> Ipv6Addr
Available on crate feature std
only.
pub const fn to_ipv6_mapped(&self) -> Ipv6Addr
std
only.Converts this address to an IPv4-mapped IPv6
address.
a.b.c.d
becomes ::ffff:a.b.c.d
§Examples
use std::net::{Ipv4Addr, Ipv6Addr};
assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
Source§impl Ipv4Addr
impl Ipv4Addr
Sourcepub fn parse_ascii(b: &[u8]) -> Result<Ipv4Addr, AddrParseError> ⓘ
🔬This is a nightly-only experimental API. (addr_parse_ascii
)Available on crate feature std
only.
pub fn parse_ascii(b: &[u8]) -> Result<Ipv4Addr, AddrParseError> ⓘ
addr_parse_ascii
)std
only.Parse an IPv4 address from a slice of bytes.
#![feature(addr_parse_ascii)]
use std::net::Ipv4Addr;
let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(Ipv4Addr::parse_ascii(b"127.0.0.1"), Ok(localhost));
Trait Implementations§
§impl Archive for Ipv4Addr
impl Archive for Ipv4Addr
§type Archived = ArchivedIpv4Addr
type Archived = ArchivedIpv4Addr
§type Resolver = ()
type Resolver = ()
§fn resolve(
&self,
_: <Ipv4Addr as Archive>::Resolver,
out: Place<<Ipv4Addr as Archive>::Archived>,
)
fn resolve( &self, _: <Ipv4Addr as Archive>::Resolver, out: Place<<Ipv4Addr as Archive>::Archived>, )
§const COPY_OPTIMIZATION: CopyOptimization<Self> = _
const COPY_OPTIMIZATION: CopyOptimization<Self> = _
serialize
. Read more1.75.0 · Source§impl BitAndAssign<&Ipv4Addr> for Ipv4Addr
impl BitAndAssign<&Ipv4Addr> for Ipv4Addr
Source§fn bitand_assign(&mut self, rhs: &Ipv4Addr)
fn bitand_assign(&mut self, rhs: &Ipv4Addr)
&=
operation. Read more1.75.0 · Source§impl BitAndAssign for Ipv4Addr
impl BitAndAssign for Ipv4Addr
Source§fn bitand_assign(&mut self, rhs: Ipv4Addr)
fn bitand_assign(&mut self, rhs: Ipv4Addr)
&=
operation. Read more1.75.0 · Source§impl BitOrAssign<&Ipv4Addr> for Ipv4Addr
impl BitOrAssign<&Ipv4Addr> for Ipv4Addr
Source§fn bitor_assign(&mut self, rhs: &Ipv4Addr)
fn bitor_assign(&mut self, rhs: &Ipv4Addr)
|=
operation. Read more1.75.0 · Source§impl BitOrAssign for Ipv4Addr
impl BitOrAssign for Ipv4Addr
Source§fn bitor_assign(&mut self, rhs: Ipv4Addr)
fn bitor_assign(&mut self, rhs: Ipv4Addr)
|=
operation. Read moreSource§impl<'de> Deserialize<'de> for Ipv4Addr
impl<'de> Deserialize<'de> for Ipv4Addr
Source§fn deserialize<D>(
deserializer: D,
) -> Result<Ipv4Addr, <D as Deserializer<'de>>::Error> ⓘwhere
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Ipv4Addr, <D as Deserializer<'de>>::Error> ⓘwhere
D: Deserializer<'de>,
§impl<D> Deserialize<Ipv4Addr, D> for ArchivedIpv4Addr
impl<D> Deserialize<Ipv4Addr, D> for ArchivedIpv4Addr
§impl<'py> IntoPyObject<'py> for &Ipv4Addr
impl<'py> IntoPyObject<'py> for &Ipv4Addr
§type Output = Bound<'py, <&Ipv4Addr as IntoPyObject<'py>>::Target>
type Output = Bound<'py, <&Ipv4Addr as IntoPyObject<'py>>::Target>
§fn into_pyobject(
self,
py: Python<'py>,
) -> Result<<&Ipv4Addr as IntoPyObject<'py>>::Output, <&Ipv4Addr as IntoPyObject<'py>>::Error> ⓘ
fn into_pyobject( self, py: Python<'py>, ) -> Result<<&Ipv4Addr as IntoPyObject<'py>>::Output, <&Ipv4Addr as IntoPyObject<'py>>::Error> ⓘ
§impl<'py> IntoPyObject<'py> for Ipv4Addr
impl<'py> IntoPyObject<'py> for Ipv4Addr
§type Output = Bound<'py, <Ipv4Addr as IntoPyObject<'py>>::Target>
type Output = Bound<'py, <Ipv4Addr as IntoPyObject<'py>>::Target>
§fn into_pyobject(
self,
py: Python<'py>,
) -> Result<<Ipv4Addr as IntoPyObject<'py>>::Output, <Ipv4Addr as IntoPyObject<'py>>::Error> ⓘ
fn into_pyobject( self, py: Python<'py>, ) -> Result<<Ipv4Addr as IntoPyObject<'py>>::Output, <Ipv4Addr as IntoPyObject<'py>>::Error> ⓘ
1.0.0 · Source§impl Ord for Ipv4Addr
impl Ord for Ipv4Addr
§impl PartialEq<ArchivedIpv4Addr> for Ipv4Addr
impl PartialEq<ArchivedIpv4Addr> for Ipv4Addr
§impl PartialEq<Ipv4Addr> for ArchivedIpv4Addr
impl PartialEq<Ipv4Addr> for ArchivedIpv4Addr
§impl PartialOrd<ArchivedIpv4Addr> for Ipv4Addr
impl PartialOrd<ArchivedIpv4Addr> for Ipv4Addr
1.16.0 · Source§impl PartialOrd<IpAddr> for Ipv4Addr
impl PartialOrd<IpAddr> for Ipv4Addr
§impl PartialOrd<Ipv4Addr> for ArchivedIpv4Addr
impl PartialOrd<Ipv4Addr> for ArchivedIpv4Addr
1.16.0 · Source§impl PartialOrd<Ipv4Addr> for IpAddr
impl PartialOrd<Ipv4Addr> for IpAddr
1.0.0 · Source§impl PartialOrd for Ipv4Addr
impl PartialOrd for Ipv4Addr
Source§impl Serialize for Ipv4Addr
impl Serialize for Ipv4Addr
Source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> ⓘwhere
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> ⓘwhere
S: Serializer,
Source§impl Step for Ipv4Addr
impl Step for Ipv4Addr
Source§fn steps_between(_: &Ipv4Addr, _: &Ipv4Addr) -> (usize, Option<usize>) ⓘ
fn steps_between(_: &Ipv4Addr, _: &Ipv4Addr) -> (usize, Option<usize>) ⓘ
step_trait
)start
to end
like Iterator::size_hint()
. Read moreSource§fn forward_checked(start: Ipv4Addr, count: usize) -> Option<Ipv4Addr> ⓘ
fn forward_checked(start: Ipv4Addr, count: usize) -> Option<Ipv4Addr> ⓘ
step_trait
)Source§fn backward_checked(start: Ipv4Addr, count: usize) -> Option<Ipv4Addr> ⓘ
fn backward_checked(start: Ipv4Addr, count: usize) -> Option<Ipv4Addr> ⓘ
step_trait
)Source§unsafe fn forward_unchecked(start: Ipv4Addr, count: usize) -> Ipv4Addr
unsafe fn forward_unchecked(start: Ipv4Addr, count: usize) -> Ipv4Addr
step_trait
)Source§unsafe fn backward_unchecked(start: Ipv4Addr, count: usize) -> Ipv4Addr
unsafe fn backward_unchecked(start: Ipv4Addr, count: usize) -> Ipv4Addr
step_trait
)§impl ToPyObject for Ipv4Addr
impl ToPyObject for Ipv4Addr
impl Copy for Ipv4Addr
impl Eq for Ipv4Addr
impl StructuralPartialEq for Ipv4Addr
impl TrustedStep for Ipv4Addr
Auto Trait Implementations§
impl Freeze for Ipv4Addr
impl RefUnwindSafe for Ipv4Addr
impl Send for Ipv4Addr
impl Sync for Ipv4Addr
impl Unpin for Ipv4Addr
impl UnwindSafe for Ipv4Addr
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
§impl<T> ArchiveUnsized for Twhere
T: Archive,
impl<T> ArchiveUnsized for Twhere
T: Archive,
§type Archived = <T as Archive>::Archived
type Archived = <T as Archive>::Archived
Archive
, it may be
unsized. Read more§fn archived_metadata(
&self,
) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata
fn archived_metadata( &self, ) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<'py, T> IntoPyObjectExt<'py> for Twhere
T: IntoPyObject<'py>,
impl<'py, T> IntoPyObjectExt<'py> for Twhere
T: IntoPyObject<'py>,
§fn into_bound_py_any(self, py: Python<'py>) -> Result<Bound<'py, PyAny>, PyErr> ⓘ
fn into_bound_py_any(self, py: Python<'py>) -> Result<Bound<'py, PyAny>, PyErr> ⓘ
self
into an owned Python object, dropping type information.§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.