Struct HashMap
pub struct HashMap<K, V, S = RandomState, A = Global>where
A: Allocator,{ /* private fields */ }
dep_hashbrown
or std
only.Expand description
std?
An unordered hash map implemented with quadratic probing and SIMD lookup.
Re-exported from either the hashmap
crate
or from std::collections
.
A hash map implemented with quadratic probing and SIMD lookup.
The default hashing algorithm is currently foldhash
, though this is
subject to change at any point in the future. This hash function is very
fast for all types of keys, but this algorithm will typically not protect
against attacks such as HashDoS.
The hashing algorithm can be replaced on a per-HashMap
basis using the
default
, with_hasher
, and with_capacity_and_hasher
methods. Many
alternative algorithms are available on crates.io, such as the fnv
crate.
It is required that the keys implement the Eq
and Hash
traits, although
this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]
.
If you implement these yourself, it is important that the following
property holds:
k1 == k2 -> hash(k1) == hash(k2)
In other words, if two keys are equal, their hashes must be equal.
It is a logic error for a key to be modified in such a way that the key’s
hash, as determined by the Hash
trait, or its equality, as determined by
the Eq
trait, changes while it is in the map. This is normally only
possible through Cell
, RefCell
, global state, I/O, or unsafe code.
It is also a logic error for the Hash
implementation of a key to panic.
This is generally only possible if the trait is implemented manually. If a
panic does occur then the contents of the HashMap
may become corrupted and
some items may be dropped from the table.
§Examples
use hashbrown::HashMap;
// Type inference lets us omit an explicit type signature (which
// would be `HashMap<String, String>` in this example).
let mut book_reviews = HashMap::new();
// Review some books.
book_reviews.insert(
"Adventures of Huckleberry Finn".to_string(),
"My favorite book.".to_string(),
);
book_reviews.insert(
"Grimms' Fairy Tales".to_string(),
"Masterpiece.".to_string(),
);
book_reviews.insert(
"Pride and Prejudice".to_string(),
"Very enjoyable.".to_string(),
);
book_reviews.insert(
"The Adventures of Sherlock Holmes".to_string(),
"Eye lyked it alot.".to_string(),
);
// Check for a specific one.
// When collections store owned values (String), they can still be
// queried using references (&str).
if !book_reviews.contains_key("Les Misérables") {
println!("We've got {} reviews, but Les Misérables ain't one.",
book_reviews.len());
}
// oops, this review has a lot of spelling mistakes, let's delete it.
book_reviews.remove("The Adventures of Sherlock Holmes");
// Look up the values associated with some keys.
let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
for &book in &to_find {
match book_reviews.get(book) {
Some(review) => println!("{}: {}", book, review),
None => println!("{} is unreviewed.", book)
}
}
// Look up the value for a key (will panic if the key is not found).
println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]);
// Iterate over everything.
for (book, review) in &book_reviews {
println!("{}: \"{}\"", book, review);
}
HashMap
also implements an Entry API
, which allows
for more complex methods of getting, setting, updating and removing keys and
their values:
use hashbrown::HashMap;
// type inference lets us omit an explicit type signature (which
// would be `HashMap<&str, u8>` in this example).
let mut player_stats = HashMap::new();
fn random_stat_buff() -> u8 {
// could actually return some random value here - let's just return
// some fixed value for now
42
}
// insert a key only if it doesn't already exist
player_stats.entry("health").or_insert(100);
// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry("defence").or_insert_with(random_stat_buff);
// update a key, guarding against the key possibly not being set
let stat = player_stats.entry("attack").or_insert(100);
*stat += random_stat_buff();
The easiest way to use HashMap
with a custom key type is to derive Eq
and Hash
.
We must also derive PartialEq
.
use hashbrown::HashMap;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
name: String,
country: String,
}
impl Viking {
/// Creates a new Viking.
fn new(name: &str, country: &str) -> Viking {
Viking { name: name.to_string(), country: country.to_string() }
}
}
// Use a HashMap to store the vikings' health points.
let mut vikings = HashMap::new();
vikings.insert(Viking::new("Einar", "Norway"), 25);
vikings.insert(Viking::new("Olaf", "Denmark"), 24);
vikings.insert(Viking::new("Harald", "Iceland"), 12);
// Use derived implementation to print the status of the vikings.
for (viking, health) in &vikings {
println!("{:?} has {} hp", viking, health);
}
A HashMap
with fixed list of elements can be initialized from an array:
use hashbrown::HashMap;
let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)]
.into_iter().collect();
// use the values stored in map
Implementations§
§impl<K, V> HashMap<K, V>
impl<K, V> HashMap<K, V>
pub fn new() -> HashMap<K, V>
pub fn new() -> HashMap<K, V>
Creates an empty HashMap
.
The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
, for example with
with_hasher
method.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
assert_eq!(map.len(), 0);
assert_eq!(map.capacity(), 0);
pub fn with_capacity(capacity: usize) -> HashMap<K, V>
pub fn with_capacity(capacity: usize) -> HashMap<K, V>
Creates an empty HashMap
with the specified capacity.
The hash map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash map will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
, for example with
with_capacity_and_hasher
method.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);
assert_eq!(map.len(), 0);
assert!(map.capacity() >= 10);
§impl<K, V, A> HashMap<K, V, RandomState, A>where
A: Allocator,
impl<K, V, A> HashMap<K, V, RandomState, A>where
A: Allocator,
pub fn new_in(alloc: A) -> HashMap<K, V, RandomState, A>
pub fn new_in(alloc: A) -> HashMap<K, V, RandomState, A>
Creates an empty HashMap
using the given allocator.
The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
, for example with
with_hasher_in
method.
§Examples
use hashbrown::HashMap;
use bumpalo::Bump;
let bump = Bump::new();
let mut map = HashMap::new_in(&bump);
// The created HashMap holds none elements
assert_eq!(map.len(), 0);
// The created HashMap also doesn't allocate memory
assert_eq!(map.capacity(), 0);
// Now we insert element inside created HashMap
map.insert("One", 1);
// We can see that the HashMap holds 1 element
assert_eq!(map.len(), 1);
// And it also allocates some capacity
assert!(map.capacity() > 1);
pub fn with_capacity_in(
capacity: usize,
alloc: A,
) -> HashMap<K, V, RandomState, A>
pub fn with_capacity_in( capacity: usize, alloc: A, ) -> HashMap<K, V, RandomState, A>
Creates an empty HashMap
with the specified capacity using the given allocator.
The hash map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash map will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
, for example with
with_capacity_and_hasher_in
method.
§Examples
use hashbrown::HashMap;
use bumpalo::Bump;
let bump = Bump::new();
let mut map = HashMap::with_capacity_in(5, &bump);
// The created HashMap holds none elements
assert_eq!(map.len(), 0);
// But it can hold at least 5 elements without reallocating
let empty_map_capacity = map.capacity();
assert!(empty_map_capacity >= 5);
// Now we insert some 5 elements inside created HashMap
map.insert("One", 1);
map.insert("Two", 2);
map.insert("Three", 3);
map.insert("Four", 4);
map.insert("Five", 5);
// We can see that the HashMap holds 5 elements
assert_eq!(map.len(), 5);
// But its capacity isn't changed
assert_eq!(map.capacity(), empty_map_capacity)
§impl<K, V, S> HashMap<K, V, S>
impl<K, V, S> HashMap<K, V, S>
pub const fn with_hasher(hash_builder: S) -> HashMap<K, V, S>
pub const fn with_hasher(hash_builder: S) -> HashMap<K, V, S>
Creates an empty HashMap
which will use the given hash builder to hash
keys.
The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
.
The hash_builder
passed should implement the BuildHasher
trait for
the HashMap
to be useful, see its documentation for details.
§Examples
use hashbrown::HashMap;
use hashbrown::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut map = HashMap::with_hasher(s);
assert_eq!(map.len(), 0);
assert_eq!(map.capacity(), 0);
map.insert(1, 2);
pub fn with_capacity_and_hasher(
capacity: usize,
hash_builder: S,
) -> HashMap<K, V, S>
pub fn with_capacity_and_hasher( capacity: usize, hash_builder: S, ) -> HashMap<K, V, S>
Creates an empty HashMap
with the specified capacity, using hash_builder
to hash the keys.
The hash map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash map will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
.
The hash_builder
passed should implement the BuildHasher
trait for
the HashMap
to be useful, see its documentation for details.
§Examples
use hashbrown::HashMap;
use hashbrown::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut map = HashMap::with_capacity_and_hasher(10, s);
assert_eq!(map.len(), 0);
assert!(map.capacity() >= 10);
map.insert(1, 2);
§impl<K, V, S, A> HashMap<K, V, S, A>where
A: Allocator,
impl<K, V, S, A> HashMap<K, V, S, A>where
A: Allocator,
pub const fn with_hasher_in(hash_builder: S, alloc: A) -> HashMap<K, V, S, A>
pub const fn with_hasher_in(hash_builder: S, alloc: A) -> HashMap<K, V, S, A>
Creates an empty HashMap
which will use the given hash builder to hash
keys. It will be allocated with the given allocator.
The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
.
§Examples
use hashbrown::HashMap;
use hashbrown::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);
pub fn with_capacity_and_hasher_in(
capacity: usize,
hash_builder: S,
alloc: A,
) -> HashMap<K, V, S, A>
pub fn with_capacity_and_hasher_in( capacity: usize, hash_builder: S, alloc: A, ) -> HashMap<K, V, S, A>
Creates an empty HashMap
with the specified capacity, using hash_builder
to hash the keys. It will be allocated with the given allocator.
The hash map will be able to hold at least capacity
elements without
reallocating. If capacity
is 0, the hash map will not allocate.
§HashDoS resistance
The hash_builder
normally use a fixed key by default and that does
not allow the HashMap
to be protected against attacks such as HashDoS
.
Users who require HashDoS resistance should explicitly use
std::collections::hash_map::RandomState
as the hasher when creating a HashMap
.
§Examples
use hashbrown::HashMap;
use hashbrown::DefaultHashBuilder;
let s = DefaultHashBuilder::default();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);
pub fn hasher(&self) -> &S
pub fn hasher(&self) -> &S
Returns a reference to the map’s BuildHasher
.
§Examples
use hashbrown::HashMap;
use hashbrown::DefaultHashBuilder;
let hasher = DefaultHashBuilder::default();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &DefaultHashBuilder = map.hasher();
pub fn capacity(&self) -> usize ⓘ
pub fn capacity(&self) -> usize ⓘ
Returns the number of elements the map can hold without reallocating.
This number is a lower bound; the HashMap<K, V>
might be able to hold
more, but is guaranteed to be able to hold at least this many.
§Examples
use hashbrown::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert_eq!(map.len(), 0);
assert!(map.capacity() >= 100);
pub fn keys(&self) -> Keys<'_, K, V> ⓘ
pub fn keys(&self) -> Keys<'_, K, V> ⓘ
An iterator visiting all keys in arbitrary order.
The iterator element type is &'a K
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<&str> = Vec::new();
for key in map.keys() {
println!("{}", key);
vec.push(*key);
}
// The `Keys` iterator produces keys in arbitrary order, so the
// keys must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, ["a", "b", "c"]);
assert_eq!(map.len(), 3);
pub fn values(&self) -> Values<'_, K, V> ⓘ
pub fn values(&self) -> Values<'_, K, V> ⓘ
An iterator visiting all values in arbitrary order.
The iterator element type is &'a V
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<i32> = Vec::new();
for val in map.values() {
println!("{}", val);
vec.push(*val);
}
// The `Values` iterator produces values in arbitrary order, so the
// values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [1, 2, 3]);
assert_eq!(map.len(), 3);
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> ⓘ
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> ⓘ
An iterator visiting all values mutably in arbitrary order.
The iterator element type is &'a mut V
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
for val in map.values_mut() {
*val = *val + 10;
}
assert_eq!(map.len(), 3);
let mut vec: Vec<i32> = Vec::new();
for val in map.values() {
println!("{}", val);
vec.push(*val);
}
// The `Values` iterator produces values in arbitrary order, so the
// values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [11, 12, 13]);
assert_eq!(map.len(), 3);
pub fn iter(&self) -> Iter<'_, K, V> ⓘ
pub fn iter(&self) -> Iter<'_, K, V> ⓘ
An iterator visiting all key-value pairs in arbitrary order.
The iterator element type is (&'a K, &'a V)
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<(&str, i32)> = Vec::new();
for (key, val) in map.iter() {
println!("key: {} val: {}", key, val);
vec.push((*key, *val));
}
// The `Iter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]);
assert_eq!(map.len(), 3);
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> ⓘ
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> ⓘ
An iterator visiting all key-value pairs in arbitrary order,
with mutable references to the values.
The iterator element type is (&'a K, &'a mut V)
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
// Update all values
for (_, val) in map.iter_mut() {
*val *= 2;
}
assert_eq!(map.len(), 3);
let mut vec: Vec<(&str, i32)> = Vec::new();
for (key, val) in &map {
println!("key: {} val: {}", key, val);
vec.push((*key, *val));
}
// The `Iter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [("a", 2), ("b", 4), ("c", 6)]);
assert_eq!(map.len(), 3);
pub fn len(&self) -> usize ⓘ
pub fn len(&self) -> usize ⓘ
Returns the number of elements in the map.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
pub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the map contains no elements.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
pub fn drain(&mut self) -> Drain<'_, K, V, A> ⓘ
pub fn drain(&mut self) -> Drain<'_, K, V, A> ⓘ
Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.
If the returned iterator is dropped before being fully consumed, it drops the remaining key-value pairs. The returned iterator keeps a mutable borrow on the vector to optimize its implementation.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");
let capacity_before_drain = a.capacity();
for (k, v) in a.drain().take(1) {
assert!(k == 1 || k == 2);
assert!(v == "a" || v == "b");
}
// As we can see, the map is empty and contains no element.
assert!(a.is_empty() && a.len() == 0);
// But map capacity is equal to old one.
assert_eq!(a.capacity(), capacity_before_drain);
let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");
{ // Iterator is dropped without being consumed.
let d = a.drain();
}
// But the map is empty even if we do not use Drain iterator.
assert!(a.is_empty());
pub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate. Keeps the allocated memory for reuse.
In other words, remove all pairs (k, v)
such that f(&k, &mut v)
returns false
.
The elements are visited in unsorted (and unspecified) order.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect();
assert_eq!(map.len(), 8);
map.retain(|&k, _| k % 2 == 0);
// We can see, that the number of elements inside map is changed.
assert_eq!(map.len(), 4);
let mut vec: Vec<(i32, i32)> = map.iter().map(|(&k, &v)| (k, v)).collect();
vec.sort_unstable();
assert_eq!(vec, [(0, 0), (2, 20), (4, 40), (6, 60)]);
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, K, V, F, A> ⓘ
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, K, V, F, A> ⓘ
Drains elements which are true under the given predicate, and returns an iterator over the removed items.
In other words, move all pairs (k, v)
such that f(&k, &mut v)
returns true
out
into another iterator.
Note that extract_if
lets you mutate every value in the filter closure, regardless of
whether you choose to keep or remove it.
If the returned ExtractIf
is not exhausted, e.g. because it is dropped without iterating
or the iteration short-circuits, then the remaining elements will be retained.
Use retain()
with a negated predicate if you do not need the returned iterator.
Keeps the allocated memory for reuse.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let drained: HashMap<i32, i32> = map.extract_if(|k, _v| k % 2 == 0).collect();
let mut evens = drained.keys().cloned().collect::<Vec<_>>();
let mut odds = map.keys().cloned().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);
let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
{ // Iterator is dropped without being consumed.
let d = map.extract_if(|k, _v| k % 2 != 0);
}
// ExtractIf was not exhausted, therefore no elements were drained.
assert_eq!(map.len(), 8);
pub fn clear(&mut self)
pub fn clear(&mut self)
Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.
§Examples
use hashbrown::HashMap;
let mut a = HashMap::new();
a.insert(1, "a");
let capacity_before_clear = a.capacity();
a.clear();
// Map is empty.
assert!(a.is_empty());
// But map capacity is equal to old one.
assert_eq!(a.capacity(), capacity_before_clear);
pub fn into_keys(self) -> IntoKeys<K, V, A> ⓘ
pub fn into_keys(self) -> IntoKeys<K, V, A> ⓘ
Creates a consuming iterator visiting all the keys in arbitrary order.
The map cannot be used after calling this.
The iterator element type is K
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
let mut vec: Vec<&str> = map.into_keys().collect();
// The `IntoKeys` iterator produces keys in arbitrary order, so the
// keys must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, ["a", "b", "c"]);
pub fn into_values(self) -> IntoValues<K, V, A> ⓘ
pub fn into_values(self) -> IntoValues<K, V, A> ⓘ
Creates a consuming iterator visiting all the values in arbitrary order.
The map cannot be used after calling this.
The iterator element type is V
.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
let mut vec: Vec<i32> = map.into_values().collect();
// The `IntoValues` iterator produces values in arbitrary order, so
// the values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [1, 2, 3]);
§impl<K, V, S, A> HashMap<K, V, S, A>
impl<K, V, S, A> HashMap<K, V, S, A>
pub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted
in the HashMap
. The collection may reserve more space to avoid
frequent reallocations.
§Panics
Panics if the new capacity exceeds isize::MAX
bytes and abort
the program
in case of allocation error. Use try_reserve
instead
if you want to handle memory allocation failure.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
// Map is empty and doesn't allocate memory
assert_eq!(map.capacity(), 0);
map.reserve(10);
// And now map can hold at least 10 elements
assert!(map.capacity() >= 10);
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> ⓘ
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> ⓘ
Tries to reserve capacity for at least additional
more elements to be inserted
in the given HashMap<K,V>
. The collection may reserve more space to avoid
frequent reallocations.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, isize> = HashMap::new();
// Map is empty and doesn't allocate memory
assert_eq!(map.capacity(), 0);
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
// And now map can hold at least 10 elements
assert!(map.capacity() >= 10);
If the capacity overflows, or the allocator reports a failure, then an error is returned:
use hashbrown::HashMap;
use hashbrown::TryReserveError;
let mut map: HashMap<i32, i32> = HashMap::new();
match map.try_reserve(usize::MAX) {
Err(error) => match error {
TryReserveError::CapacityOverflow => {}
_ => panic!("TryReserveError::AllocError ?"),
},
_ => panic!(),
}
pub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
pub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
This function does nothing if the current capacity is smaller than the supplied minimum capacity.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
map.shrink_to(10);
assert!(map.capacity() >= 2);
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S, A>
pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S, A>
Gets the given key’s corresponding entry in the map for in-place manipulation.
§Examples
use hashbrown::HashMap;
let mut letters = HashMap::new();
for ch in "a short treatise on fungi".chars() {
let counter = letters.entry(ch).or_insert(0);
*counter += 1;
}
assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
pub fn entry_ref<'a, 'b, Q>(
&'a mut self,
key: &'b Q,
) -> EntryRef<'a, 'b, K, Q, V, S, A>
pub fn entry_ref<'a, 'b, Q>( &'a mut self, key: &'b Q, ) -> EntryRef<'a, 'b, K, Q, V, S, A>
Gets the given key’s corresponding entry by reference in the map for in-place manipulation.
§Examples
use hashbrown::HashMap;
let mut words: HashMap<String, usize> = HashMap::new();
let source = ["poneyland", "horseyland", "poneyland", "poneyland"];
for (i, &s) in source.iter().enumerate() {
let counter = words.entry_ref(s).or_insert(0);
*counter += 1;
}
assert_eq!(words["poneyland"], 3);
assert_eq!(words["horseyland"], 1);
pub fn get<Q>(&self, k: &Q) -> Option<&V> ⓘ
pub fn get<Q>(&self, k: &Q) -> Option<&V> ⓘ
Returns a reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)> ⓘ
pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)> ⓘ
Returns the key-value pair corresponding to the supplied key.
The supplied key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);
pub fn get_key_value_mut<Q>(&mut self, k: &Q) -> Option<(&K, &mut V)> ⓘ
pub fn get_key_value_mut<Q>(&mut self, k: &Q) -> Option<(&K, &mut V)> ⓘ
Returns the key-value pair corresponding to the supplied key, with a mutable reference to value.
The supplied key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
let (k, v) = map.get_key_value_mut(&1).unwrap();
assert_eq!(k, &1);
assert_eq!(v, &mut "a");
*v = "b";
assert_eq!(map.get_key_value_mut(&1), Some((&1, &mut "b")));
assert_eq!(map.get_key_value_mut(&2), None);
pub fn contains_key<Q>(&self, k: &Q) -> bool
pub fn contains_key<Q>(&self, k: &Q) -> bool
Returns true
if the map contains a value for the specified key.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V> ⓘ
pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V> ⓘ
Returns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
*x = "b";
}
assert_eq!(map[&1], "b");
assert_eq!(map.get_mut(&2), None);
pub fn get_many_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> [Option<&mut V>; N]
pub fn get_many_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<&mut V>; N]
Attempts to get mutable references to N
values in the map at once.
Returns an array of length N
with the results of each query. For soundness, at most one
mutable reference will be returned to any value. None
will be used if the key is missing.
§Panics
Panics if any keys are overlapping.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
// Get Athenæum and Bodleian Library
let [Some(a), Some(b)] = libraries.get_many_mut([
"Athenæum",
"Bodleian Library",
]) else { panic!() };
// Assert values of Athenæum and Library of Congress
let got = libraries.get_many_mut([
"Athenæum",
"Library of Congress",
]);
assert_eq!(
got,
[
Some(&mut 1807),
Some(&mut 1800),
],
);
// Missing keys result in None
let got = libraries.get_many_mut([
"Athenæum",
"New York Public Library",
]);
assert_eq!(
got,
[
Some(&mut 1807),
None
]
);
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Athenæum".to_string(), 1807);
// Duplicate keys panic!
let got = libraries.get_many_mut([
"Athenæum",
"Athenæum",
]);
pub unsafe fn get_many_unchecked_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> [Option<&mut V>; N]
pub unsafe fn get_many_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<&mut V>; N]
Attempts to get mutable references to N
values in the map at once, without validating that
the values are unique.
Returns an array of length N
with the results of each query. None
will be used if
the key is missing.
For a safe alternative see get_many_mut
.
§Safety
Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
// SAFETY: The keys do not overlap.
let [Some(a), Some(b)] = (unsafe { libraries.get_many_unchecked_mut([
"Athenæum",
"Bodleian Library",
]) }) else { panic!() };
// SAFETY: The keys do not overlap.
let got = unsafe { libraries.get_many_unchecked_mut([
"Athenæum",
"Library of Congress",
]) };
assert_eq!(
got,
[
Some(&mut 1807),
Some(&mut 1800),
],
);
// SAFETY: The keys do not overlap.
let got = unsafe { libraries.get_many_unchecked_mut([
"Athenæum",
"New York Public Library",
]) };
// Missing keys result in None
assert_eq!(got, [Some(&mut 1807), None]);
pub fn get_many_key_value_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> [Option<(&K, &mut V)>; N]
pub fn get_many_key_value_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<(&K, &mut V)>; N]
Attempts to get mutable references to N
values in the map at once, with immutable
references to the corresponding keys.
Returns an array of length N
with the results of each query. For soundness, at most one
mutable reference will be returned to any value. None
will be used if the key is missing.
§Panics
Panics if any keys are overlapping.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(
got,
[
Some((&"Bodleian Library".to_string(), &mut 1602)),
Some((&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691)),
],
);
// Missing keys result in None
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Gewandhaus",
]);
assert_eq!(got, [Some((&"Bodleian Library".to_string(), &mut 1602)), None]);
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
// Duplicate keys result in panic!
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Herzogin-Anna-Amalia-Bibliothek",
"Herzogin-Anna-Amalia-Bibliothek",
]);
pub unsafe fn get_many_key_value_unchecked_mut<Q, const N: usize>(
&mut self,
ks: [&Q; N],
) -> [Option<(&K, &mut V)>; N]
pub unsafe fn get_many_key_value_unchecked_mut<Q, const N: usize>( &mut self, ks: [&Q; N], ) -> [Option<(&K, &mut V)>; N]
Attempts to get mutable references to N
values in the map at once, with immutable
references to the corresponding keys, without validating that the values are unique.
Returns an array of length N
with the results of each query. None
will be returned if
any of the keys are missing.
For a safe alternative see get_many_key_value_mut
.
§Safety
Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.
§Examples
use hashbrown::HashMap;
let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(
got,
[
Some((&"Bodleian Library".to_string(), &mut 1602)),
Some((&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691)),
],
);
// Missing keys result in None
let got = libraries.get_many_key_value_mut([
"Bodleian Library",
"Gewandhaus",
]);
assert_eq!(
got,
[
Some((&"Bodleian Library".to_string(), &mut 1602)),
None,
],
);
pub fn insert(&mut self, k: K, v: V) -> Option<V> ⓘ
pub fn insert(&mut self, k: K, v: V) -> Option<V> ⓘ
Inserts a key-value pair into the map.
If the map did not have this key present, None
is returned.
If the map did have this key present, the value is updated, and the old
value is returned. The key is not updated, though; this matters for
types that can be ==
without being identical. See the std::collections
module-level documentation for more.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);
map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
pub unsafe fn insert_unique_unchecked(&mut self, k: K, v: V) -> (&K, &mut V) ⓘ
pub unsafe fn insert_unique_unchecked(&mut self, k: K, v: V) -> (&K, &mut V) ⓘ
Insert a key-value pair into the map without checking if the key already exists in the map.
This operation is faster than regular insert, because it does not perform lookup before insertion.
This operation is useful during initial population of the map. For example, when constructing a map from another map, we know that keys are unique.
Returns a reference to the key and value just inserted.
§Safety
This operation is safe if a key does not exist in the map.
However, if a key exists in the map already, the behavior is unspecified: this operation may panic, loop forever, or any following operation with the map may panic, loop forever or return arbitrary result.
That said, this operation (and following operations) are guaranteed to not violate memory safety.
However this operation is still unsafe because the resulting HashMap
may be passed to unsafe code which does expect the map to behave
correctly, and would cause unsoundness as a result.
§Examples
use hashbrown::HashMap;
let mut map1 = HashMap::new();
assert_eq!(map1.insert(1, "a"), None);
assert_eq!(map1.insert(2, "b"), None);
assert_eq!(map1.insert(3, "c"), None);
assert_eq!(map1.len(), 3);
let mut map2 = HashMap::new();
for (key, value) in map1.into_iter() {
unsafe {
map2.insert_unique_unchecked(key, value);
}
}
let (key, value) = unsafe { map2.insert_unique_unchecked(4, "d") };
assert_eq!(key, &4);
assert_eq!(value, &mut "d");
*value = "e";
assert_eq!(map2[&1], "a");
assert_eq!(map2[&2], "b");
assert_eq!(map2[&3], "c");
assert_eq!(map2[&4], "e");
assert_eq!(map2.len(), 4);
pub fn try_insert(
&mut self,
key: K,
value: V,
) -> Result<&mut V, OccupiedError<'_, K, V, S, A>> ⓘ
pub fn try_insert( &mut self, key: K, value: V, ) -> Result<&mut V, OccupiedError<'_, K, V, S, A>> ⓘ
Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.
§Errors
If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.
§Examples
Basic usage:
use hashbrown::HashMap;
use hashbrown::hash_map::OccupiedError;
let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
match map.try_insert(37, "b") {
Err(OccupiedError { entry, value }) => {
assert_eq!(entry.key(), &37);
assert_eq!(entry.get(), &"a");
assert_eq!(value, "b");
}
_ => panic!()
}
pub fn remove<Q>(&mut self, k: &Q) -> Option<V> ⓘ
pub fn remove<Q>(&mut self, k: &Q) -> Option<V> ⓘ
Removes a key from the map, returning the value at the key if the key was previously in the map. Keeps the allocated memory for reuse.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
// The map is empty
assert!(map.is_empty() && map.capacity() == 0);
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
// Now map holds none elements
assert!(map.is_empty());
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)> ⓘ
pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)> ⓘ
Removes a key from the map, returning the stored key and value if the key was previously in the map. Keeps the allocated memory for reuse.
The key may be any borrowed form of the map’s key type, but
Hash
and Eq
on the borrowed form must match those for
the key type.
§Examples
use hashbrown::HashMap;
let mut map = HashMap::new();
// The map is empty
assert!(map.is_empty() && map.capacity() == 0);
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);
// Now map hold none elements
assert!(map.is_empty());
pub fn allocation_size(&self) -> usize ⓘ
pub fn allocation_size(&self) -> usize ⓘ
Returns the total amount of memory allocated internally by the hash set, in bytes.
The returned number is informational only. It is intended to be primarily used for memory profiling.
§impl<K, V, S, A> HashMap<K, V, S, A>where
A: Allocator,
impl<K, V, S, A> HashMap<K, V, S, A>where
A: Allocator,
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A>
pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A>
Creates a raw entry builder for the HashMap
.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.
Raw entries are useful for such exotic situations as:
- Hash memoization
- Deferring the creation of an owned key until it is known to be required
- Using a search key that doesn’t work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Because raw entries provide much more low-level control, it’s much easier
to put the HashMap
into an inconsistent state which, while memory-safe,
will cause the map to produce seemingly random results. Higher-level and
more foolproof APIs like entry
should be preferred when possible.
In particular, the hash used to initialized the raw entry must still be
consistent with the hash of the key that is ultimately stored in the entry.
This is because implementations of HashMap
may need to recompute hashes
when resizing, at which point only the keys are available.
Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).
§Examples
use core::hash::{BuildHasher, Hash};
use hashbrown::hash_map::{HashMap, RawEntryMut};
let mut map = HashMap::new();
map.extend([("a", 100), ("b", 200), ("c", 300)]);
fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
use core::hash::Hasher;
let mut state = hash_builder.build_hasher();
key.hash(&mut state);
state.finish()
}
// Existing key (insert and update)
match map.raw_entry_mut().from_key(&"a") {
RawEntryMut::Vacant(_) => unreachable!(),
RawEntryMut::Occupied(mut view) => {
assert_eq!(view.get(), &100);
let v = view.get_mut();
let new_v = (*v) * 10;
*v = new_v;
assert_eq!(view.insert(1111), 1000);
}
}
assert_eq!(map[&"a"], 1111);
assert_eq!(map.len(), 3);
// Existing key (take)
let hash = compute_hash(map.hasher(), &"c");
match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"c") {
RawEntryMut::Vacant(_) => unreachable!(),
RawEntryMut::Occupied(view) => {
assert_eq!(view.remove_entry(), ("c", 300));
}
}
assert_eq!(map.raw_entry().from_key(&"c"), None);
assert_eq!(map.len(), 2);
// Nonexistent key (insert and update)
let key = "d";
let hash = compute_hash(map.hasher(), &key);
match map.raw_entry_mut().from_hash(hash, |q| *q == key) {
RawEntryMut::Occupied(_) => unreachable!(),
RawEntryMut::Vacant(view) => {
let (k, value) = view.insert("d", 4000);
assert_eq!((*k, *value), ("d", 4000));
*value = 40000;
}
}
assert_eq!(map[&"d"], 40000);
assert_eq!(map.len(), 3);
match map.raw_entry_mut().from_hash(hash, |q| *q == key) {
RawEntryMut::Vacant(_) => unreachable!(),
RawEntryMut::Occupied(view) => {
assert_eq!(view.remove_entry(), ("d", 40000));
}
}
assert_eq!(map.get(&"d"), None);
assert_eq!(map.len(), 2);
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A>
pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A>
Creates a raw immutable entry builder for the HashMap
.
Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.
This is useful for
- Hash memoization
- Using a search key that doesn’t work with the Borrow trait
- Using custom comparison logic without newtype wrappers
Unless you are in such a situation, higher-level and more foolproof APIs like
get
should be preferred.
Immutable raw entries have very limited use; you might instead want raw_entry_mut
.
§Examples
use core::hash::{BuildHasher, Hash};
use hashbrown::HashMap;
let mut map = HashMap::new();
map.extend([("a", 100), ("b", 200), ("c", 300)]);
fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
use core::hash::Hasher;
let mut state = hash_builder.build_hasher();
key.hash(&mut state);
state.finish()
}
for k in ["a", "b", "c", "d", "e", "f"] {
let hash = compute_hash(map.hasher(), k);
let v = map.get(&k).cloned();
let kv = v.as_ref().map(|v| (&k, v));
println!("Key: {} and value: {:?}", k, v);
assert_eq!(map.raw_entry().from_key(&k), kv);
assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv);
assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv);
}
Trait Implementations§
§impl<K, V, S> Archive for HashMap<K, V, S>
impl<K, V, S> Archive for HashMap<K, V, S>
§type Archived = ArchivedHashMap<<K as Archive>::Archived, <V as Archive>::Archived>
type Archived = ArchivedHashMap<<K as Archive>::Archived, <V as Archive>::Archived>
§type Resolver = HashMapResolver
type Resolver = HashMapResolver
§fn resolve(
&self,
resolver: <HashMap<K, V, S> as Archive>::Resolver,
out: Place<<HashMap<K, V, S> as Archive>::Archived>,
)
fn resolve( &self, resolver: <HashMap<K, V, S> as Archive>::Resolver, out: Place<<HashMap<K, V, S> as Archive>::Archived>, )
§const COPY_OPTIMIZATION: CopyOptimization<Self> = _
const COPY_OPTIMIZATION: CopyOptimization<Self> = _
serialize
. Read more§impl<A, B, K, V, H> ArchiveWith<HashMap<K, V, H>> for MapKV<A, B>
impl<A, B, K, V, H> ArchiveWith<HashMap<K, V, H>> for MapKV<A, B>
§type Archived = ArchivedHashMap<<A as ArchiveWith<K>>::Archived, <B as ArchiveWith<V>>::Archived>
type Archived = ArchivedHashMap<<A as ArchiveWith<K>>::Archived, <B as ArchiveWith<V>>::Archived>
Self
with F
.§type Resolver = HashMapResolver
type Resolver = HashMapResolver
Self
with F
.§fn resolve_with(
field: &HashMap<K, V, H>,
resolver: <MapKV<A, B> as ArchiveWith<HashMap<K, V, H>>>::Resolver,
out: Place<<MapKV<A, B> as ArchiveWith<HashMap<K, V, H>>>::Archived>,
)
fn resolve_with( field: &HashMap<K, V, H>, resolver: <MapKV<A, B> as ArchiveWith<HashMap<K, V, H>>>::Resolver, out: Place<<MapKV<A, B> as ArchiveWith<HashMap<K, V, H>>>::Archived>, )
F
.Source§impl<K, V> BitSized<{$PTR_BITS * 3}> for HashMap<K, V>
impl<K, V> BitSized<{$PTR_BITS * 3}> for HashMap<K, V>
Source§const BIT_SIZE: usize = _
const BIT_SIZE: usize = _
Source§const MIN_BYTE_SIZE: usize = _
const MIN_BYTE_SIZE: usize = _
Source§impl<K, V> DataCollection for HashMap<K, V>
impl<K, V> DataCollection for HashMap<K, V>
Source§fn collection_capacity(&self) -> Result<usize, NotAvailable> ⓘ
fn collection_capacity(&self) -> Result<usize, NotAvailable> ⓘ
Returns [NotSupported
][E::NotSupported].
Source§fn collection_is_full(&self) -> Result<bool, NotAvailable> ⓘ
fn collection_is_full(&self) -> Result<bool, NotAvailable> ⓘ
Returns [NotSupported
][E::NotSupported].
Source§fn collection_len(&self) -> Result<usize, NotAvailable> ⓘ
fn collection_len(&self) -> Result<usize, NotAvailable> ⓘ
Source§fn collection_is_empty(&self) -> Result<bool, NotAvailable> ⓘ
fn collection_is_empty(&self) -> Result<bool, NotAvailable> ⓘ
true
if the collection is empty, false
if it’s not.Source§fn collection_contains(
&self,
element: Self::Element,
) -> Result<bool, NotAvailable> ⓘwhere
V: PartialEq,
fn collection_contains(
&self,
element: Self::Element,
) -> Result<bool, NotAvailable> ⓘwhere
V: PartialEq,
true
if the collection contains the given element
.Source§fn collection_count(
&self,
element: &Self::Element,
) -> Result<usize, NotAvailable> ⓘwhere
V: PartialEq,
fn collection_count(
&self,
element: &Self::Element,
) -> Result<usize, NotAvailable> ⓘwhere
V: PartialEq,
element
appears in the collection.§impl<K, V, S, A> Default for HashMap<K, V, S, A>
impl<K, V, S, A> Default for HashMap<K, V, S, A>
§fn default() -> HashMap<K, V, S, A>
fn default() -> HashMap<K, V, S, A>
Creates an empty HashMap<K, V, S, A>
, with the Default
value for the hasher and allocator.
§Examples
use hashbrown::HashMap;
use std::collections::hash_map::RandomState;
// You can specify all types of HashMap, including hasher and allocator.
// Created map is empty and don't allocate memory
let map: HashMap<u32, String> = Default::default();
assert_eq!(map.capacity(), 0);
let map: HashMap<u32, String, RandomState> = HashMap::default();
assert_eq!(map.capacity(), 0);
§impl<K, V, D, S> Deserialize<HashMap<K, V, S>, D> for ArchivedHashMap<<K as Archive>::Archived, <V as Archive>::Archived>
impl<K, V, D, S> Deserialize<HashMap<K, V, S>, D> for ArchivedHashMap<<K as Archive>::Archived, <V as Archive>::Archived>
§impl<A, B, K, V, D, S> DeserializeWith<ArchivedHashMap<<A as ArchiveWith<K>>::Archived, <B as ArchiveWith<V>>::Archived>, HashMap<K, V, S>, D> for MapKV<A, B>where
A: ArchiveWith<K> + DeserializeWith<<A as ArchiveWith<K>>::Archived, K, D>,
B: ArchiveWith<V> + DeserializeWith<<B as ArchiveWith<V>>::Archived, V, D>,
K: Ord + Hash + Eq,
D: Fallible + ?Sized,
S: Default + BuildHasher,
impl<A, B, K, V, D, S> DeserializeWith<ArchivedHashMap<<A as ArchiveWith<K>>::Archived, <B as ArchiveWith<V>>::Archived>, HashMap<K, V, S>, D> for MapKV<A, B>where
A: ArchiveWith<K> + DeserializeWith<<A as ArchiveWith<K>>::Archived, K, D>,
B: ArchiveWith<V> + DeserializeWith<<B as ArchiveWith<V>>::Archived, V, D>,
K: Ord + Hash + Eq,
D: Fallible + ?Sized,
S: Default + BuildHasher,
§fn deserialize_with(
field: &ArchivedHashMap<<A as ArchiveWith<K>>::Archived, <B as ArchiveWith<V>>::Archived>,
deserializer: &mut D,
) -> Result<HashMap<K, V, S>, <D as Fallible>::Error> ⓘ
fn deserialize_with( field: &ArchivedHashMap<<A as ArchiveWith<K>>::Archived, <B as ArchiveWith<V>>::Archived>, deserializer: &mut D, ) -> Result<HashMap<K, V, S>, <D as Fallible>::Error> ⓘ
F
using the given deserializer.§impl<'a, K, V, S, A> Extend<&'a (K, V)> for HashMap<K, V, S, A>
Inserts all new key-values from the iterator and replaces values with existing
keys with new values returned from the iterator.
impl<'a, K, V, S, A> Extend<&'a (K, V)> for HashMap<K, V, S, A>
Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = &'a (K, V)>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = &'a (K, V)>,
Inserts all new key-values from the iterator to existing HashMap<K, V, S, A>
.
Replace values with existing keys with new values returned from the iterator.
The keys and values must implement Copy
trait.
§Examples
use hashbrown::hash_map::HashMap;
let mut map = HashMap::new();
map.insert(1, 100);
let arr = [(1, 1), (2, 2)];
let some_iter = arr.iter();
map.extend(some_iter);
// Replace values with existing keys with new values returned from the iterator.
// So that the map.get(&1) doesn't return Some(&100).
assert_eq!(map.get(&1), Some(&1));
let some_vec: Vec<_> = vec![(3, 3), (4, 4)];
map.extend(&some_vec);
let some_arr = [(5, 5), (6, 6)];
map.extend(&some_arr);
let mut vec: Vec<_> = map.into_iter().collect();
// The `IntoIter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]);
§fn extend_one(&mut self, _: &'a (K, V))
fn extend_one(&mut self, _: &'a (K, V))
extend_one
)§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<'a, K, V, S, A> Extend<(&'a K, &'a V)> for HashMap<K, V, S, A>
Inserts all new key-values from the iterator and replaces values with existing
keys with new values returned from the iterator.
impl<'a, K, V, S, A> Extend<(&'a K, &'a V)> for HashMap<K, V, S, A>
Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.
§fn extend<T>(&mut self, iter: T)
fn extend<T>(&mut self, iter: T)
Inserts all new key-values from the iterator to existing HashMap<K, V, S, A>
.
Replace values with existing keys with new values returned from the iterator.
The keys and values must implement Copy
trait.
§Examples
use hashbrown::hash_map::HashMap;
let mut map = HashMap::new();
map.insert(1, 100);
let arr = [(1, 1), (2, 2)];
let some_iter = arr.iter().map(|(k, v)| (k, v));
map.extend(some_iter);
// Replace values with existing keys with new values returned from the iterator.
// So that the map.get(&1) doesn't return Some(&100).
assert_eq!(map.get(&1), Some(&1));
let some_vec: Vec<_> = vec![(3, 3), (4, 4)];
map.extend(some_vec.iter().map(|(k, v)| (k, v)));
let some_arr = [(5, 5), (6, 6)];
map.extend(some_arr.iter().map(|(k, v)| (k, v)));
// You can also extend from another HashMap
let mut new_map = HashMap::new();
new_map.extend(&map);
assert_eq!(new_map, map);
let mut vec: Vec<_> = new_map.into_iter().collect();
// The `IntoIter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]);
§fn extend_one(&mut self, _: (&'a K, &'a V))
fn extend_one(&mut self, _: (&'a K, &'a V))
extend_one
)§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<K, V, S, A> Extend<(K, V)> for HashMap<K, V, S, A>
Inserts all new key-values from the iterator and replaces values with existing
keys with new values returned from the iterator.
impl<K, V, S, A> Extend<(K, V)> for HashMap<K, V, S, A>
Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = (K, V)>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = (K, V)>,
Inserts all new key-values from the iterator to existing HashMap<K, V, S, A>
.
Replace values with existing keys with new values returned from the iterator.
§Examples
use hashbrown::hash_map::HashMap;
let mut map = HashMap::new();
map.insert(1, 100);
let some_iter = [(1, 1), (2, 2)].into_iter();
map.extend(some_iter);
// Replace values with existing keys with new values returned from the iterator.
// So that the map.get(&1) doesn't return Some(&100).
assert_eq!(map.get(&1), Some(&1));
let some_vec: Vec<_> = vec![(3, 3), (4, 4)];
map.extend(some_vec);
let some_arr = [(5, 5), (6, 6)];
map.extend(some_arr);
let old_map_len = map.len();
// You can also extend from another HashMap
let mut new_map = HashMap::new();
new_map.extend(map);
assert_eq!(new_map.len(), old_map_len);
let mut vec: Vec<_> = new_map.into_iter().collect();
// The `IntoIter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]);
§fn extend_one(&mut self, _: (K, V))
fn extend_one(&mut self, _: (K, V))
extend_one
)§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<K, V, S, A> FromIterator<(K, V)> for HashMap<K, V, S, A>
impl<K, V, S, A> FromIterator<(K, V)> for HashMap<K, V, S, A>
§impl<'py, K, V, S> FromPyObject<'py> for HashMap<K, V, S>
impl<'py, K, V, S> FromPyObject<'py> for HashMap<K, V, S>
§impl<'a, K, V, S, A> IntoIterator for &'a HashMap<K, V, S, A>where
A: Allocator,
impl<'a, K, V, S, A> IntoIterator for &'a HashMap<K, V, S, A>where
A: Allocator,
§fn into_iter(self) -> Iter<'a, K, V> ⓘ
fn into_iter(self) -> Iter<'a, K, V> ⓘ
Creates an iterator over the entries of a HashMap
in arbitrary order.
The iterator element type is (&'a K, &'a V)
.
Return the same Iter
struct as by the iter
method on HashMap
.
§Examples
use hashbrown::HashMap;
let map_one: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into();
let mut map_two = HashMap::new();
for (key, value) in &map_one {
println!("Key: {}, Value: {}", key, value);
map_two.insert(*key, *value);
}
assert_eq!(map_one, map_two);
§impl<'a, K, V, S, A> IntoIterator for &'a mut HashMap<K, V, S, A>where
A: Allocator,
impl<'a, K, V, S, A> IntoIterator for &'a mut HashMap<K, V, S, A>where
A: Allocator,
§fn into_iter(self) -> IterMut<'a, K, V> ⓘ
fn into_iter(self) -> IterMut<'a, K, V> ⓘ
Creates an iterator over the entries of a HashMap
in arbitrary order
with mutable references to the values. The iterator element type is
(&'a K, &'a mut V)
.
Return the same IterMut
struct as by the iter_mut
method on
HashMap
.
§Examples
use hashbrown::HashMap;
let mut map: HashMap<_, _> = [("a", 1), ("b", 2), ("c", 3)].into();
for (key, value) in &mut map {
println!("Key: {}, Value: {}", key, value);
*value *= 2;
}
let mut vec = map.iter().collect::<Vec<_>>();
// The `Iter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [(&"a", &2), (&"b", &4), (&"c", &6)]);
§impl<K, V, S, A> IntoIterator for HashMap<K, V, S, A>where
A: Allocator,
impl<K, V, S, A> IntoIterator for HashMap<K, V, S, A>where
A: Allocator,
§fn into_iter(self) -> IntoIter<K, V, A> ⓘ
fn into_iter(self) -> IntoIter<K, V, A> ⓘ
Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.
§Examples
use hashbrown::HashMap;
let map: HashMap<_, _> = [("a", 1), ("b", 2), ("c", 3)].into();
// Not possible with .iter()
let mut vec: Vec<(&str, i32)> = map.into_iter().collect();
// The `IntoIter` iterator produces items in arbitrary order, so
// the items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]);
§impl<'a, 'py, K, V, H> IntoPyObject<'py> for &'a HashMap<K, V, H>
impl<'a, 'py, K, V, H> IntoPyObject<'py> for &'a HashMap<K, V, H>
§type Output = Bound<'py, <&'a HashMap<K, V, H> as IntoPyObject<'py>>::Target>
type Output = Bound<'py, <&'a HashMap<K, V, H> as IntoPyObject<'py>>::Target>
§fn into_pyobject(
self,
py: Python<'py>,
) -> Result<<&'a HashMap<K, V, H> as IntoPyObject<'py>>::Output, <&'a HashMap<K, V, H> as IntoPyObject<'py>>::Error> ⓘ
fn into_pyobject( self, py: Python<'py>, ) -> Result<<&'a HashMap<K, V, H> as IntoPyObject<'py>>::Output, <&'a HashMap<K, V, H> as IntoPyObject<'py>>::Error> ⓘ
§impl<'py, K, V, H> IntoPyObject<'py> for HashMap<K, V, H>
impl<'py, K, V, H> IntoPyObject<'py> for HashMap<K, V, H>
§type Output = Bound<'py, <HashMap<K, V, H> as IntoPyObject<'py>>::Target>
type Output = Bound<'py, <HashMap<K, V, H> as IntoPyObject<'py>>::Target>
§fn into_pyobject(
self,
py: Python<'py>,
) -> Result<<HashMap<K, V, H> as IntoPyObject<'py>>::Output, <HashMap<K, V, H> as IntoPyObject<'py>>::Error> ⓘ
fn into_pyobject( self, py: Python<'py>, ) -> Result<<HashMap<K, V, H> as IntoPyObject<'py>>::Output, <HashMap<K, V, H> as IntoPyObject<'py>>::Error> ⓘ
§impl<K, V, AK, AV, S> PartialEq<HashMap<K, V, S>> for ArchivedHashMap<AK, AV>
impl<K, V, AK, AV, S> PartialEq<HashMap<K, V, S>> for ArchivedHashMap<AK, AV>
§impl<A, B, K, V, H, S> SerializeWith<HashMap<K, V, H>, S> for MapKV<A, B>where
A: ArchiveWith<K> + SerializeWith<K, S>,
B: ArchiveWith<V> + SerializeWith<V, S>,
K: Hash + Eq,
<A as ArchiveWith<K>>::Archived: Eq + Hash,
S: Fallible + Writer + Allocator + ?Sized,
<S as Fallible>::Error: Source,
H: Default + BuildHasher,
<H as BuildHasher>::Hasher: Default,
impl<A, B, K, V, H, S> SerializeWith<HashMap<K, V, H>, S> for MapKV<A, B>where
A: ArchiveWith<K> + SerializeWith<K, S>,
B: ArchiveWith<V> + SerializeWith<V, S>,
K: Hash + Eq,
<A as ArchiveWith<K>>::Archived: Eq + Hash,
S: Fallible + Writer + Allocator + ?Sized,
<S as Fallible>::Error: Source,
H: Default + BuildHasher,
<H as BuildHasher>::Hasher: Default,
§impl<K, V, H> ToPyObject for HashMap<K, V, H>
impl<K, V, H> ToPyObject for HashMap<K, V, H>
impl<K, V, S, A> Eq for HashMap<K, V, S, A>
Auto Trait Implementations§
impl<K, V, S, A> Freeze for HashMap<K, V, S, A>
impl<K, V, S, A> RefUnwindSafe for HashMap<K, V, S, A>
impl<K, V, S, A> Send for HashMap<K, V, S, A>
impl<K, V, S, A> Sync for HashMap<K, V, S, A>
impl<K, V, S, A> Unpin for HashMap<K, V, S, A>
impl<K, V, S, A> UnwindSafe for HashMap<K, V, S, A>
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
§impl<T> ArchiveUnsized for Twhere
T: Archive,
impl<T> ArchiveUnsized for Twhere
T: Archive,
§type Archived = <T as Archive>::Archived
type Archived = <T as Archive>::Archived
Archive
, it may be
unsized. Read more§fn archived_metadata(
&self,
) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata
fn archived_metadata( &self, ) -> <<T as ArchiveUnsized>::Archived as ArchivePointee>::ArchivedMetadata
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> ByteSized for T
impl<T> ByteSized for T
Source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
Source§fn byte_align(&self) -> usize ⓘ
fn byte_align(&self) -> usize ⓘ
Source§fn ptr_size_ratio(&self) -> [usize; 2]
fn ptr_size_ratio(&self) -> [usize; 2]
Source§impl<T, R> Chain<R> for Twhere
T: ?Sized,
impl<T, R> Chain<R> for Twhere
T: ?Sized,
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.Source§impl<T> ExtAny for T
impl<T> ExtAny for T
Source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
Source§impl<T> ExtMem for Twhere
T: ?Sized,
impl<T> ExtMem for Twhere
T: ?Sized,
Source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
Source§fn mem_align_of_val(&self) -> usize ⓘ
fn mem_align_of_val(&self) -> usize ⓘ
Source§fn mem_size_of_val(&self) -> usize ⓘ
fn mem_size_of_val(&self) -> usize ⓘ
Source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
true
if dropping values of this type matters. Read moreSource§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
self
without running its destructor. Read moreSource§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
Source§unsafe fn mem_zeroed<T>() -> T
unsafe fn mem_zeroed<T>() -> T
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe fn mem_transmute_copy<Src, Dst>(src: &Src) -> Dst
unsafe_layout
only.T
represented by the all-zero byte-pattern. Read moreSource§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
unsafe_slice
only.§impl<'py, T> FromPyObjectBound<'_, 'py> for Twhere
T: FromPyObject<'py>,
impl<'py, T> FromPyObjectBound<'_, 'py> for Twhere
T: FromPyObject<'py>,
§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Hook for T
impl<T> Hook for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<'py, T, I> IntoPyDict<'py> for Iwhere
T: PyDictItem<'py>,
I: IntoIterator<Item = T>,
impl<'py, T, I> IntoPyDict<'py> for Iwhere
T: PyDictItem<'py>,
I: IntoIterator<Item = T>,
§fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr> ⓘ
fn into_py_dict(self, py: Python<'py>) -> Result<Bound<'py, PyDict>, PyErr> ⓘ
PyDict
object pointer. Whether pointer owned or borrowed
depends on implementation.§fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>
fn into_py_dict_bound(self, py: Python<'py>) -> Bound<'py, PyDict>
IntoPyDict::into_py_dict
IntoPyDict::into_py_dict
.§impl<'py, T> IntoPyObjectExt<'py> for Twhere
T: IntoPyObject<'py>,
impl<'py, T> IntoPyObjectExt<'py> for Twhere
T: IntoPyObject<'py>,
§fn into_bound_py_any(self, py: Python<'py>) -> Result<Bound<'py, PyAny>, PyErr> ⓘ
fn into_bound_py_any(self, py: Python<'py>) -> Result<Bound<'py, PyAny>, PyErr> ⓘ
self
into an owned Python object, dropping type information.§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError> ⓘ
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2
§unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
unsafe fn is_niched(niched: *const NichedOption<T, N1>) -> bool
§fn resolve_niched(out: Place<NichedOption<T, N1>>)
fn resolve_niched(out: Place<NichedOption<T, N1>>)
out
indicating that a T
is niched.