devela/num/
interval.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// devela::code::interval
//
//! Defines the [`Interval`] wrapper type.
//

use crate::{
    iif, Bound, ConstDefault, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo,
    RangeToInclusive,
};

/// Represents an interval with a `lower` and an `upper` bound.
///
/// The `Interval` type allows modeling ranges of values with optional inclusion
/// or exclusion at each bound. This is useful for mathematical operations,
/// range checks, and interval arithmetic.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Interval<T> {
    /// The lower bound (also known as the *start* bound, or the *left* bound).
    pub lower: Bound<T>,
    /// The upper bound (also known as the *end*, bound or the *right* bound).
    pub upper: Bound<T>,
}

/// # Methodical constructors
impl<T> Interval<T> {
    // lower-closed

    /// Creates a closed interval $[l, u]$ `lower..=upper` [`RangeInclusive`].
    #[must_use]
    pub const fn closed(lower: T, upper: T) -> Self {
        Self::new(Bound::Included(lower), Bound::Included(upper))
    }
    /// Creates a half-open interval $[l, u)$ `lower..upper` [`Range`].
    #[must_use]
    pub const fn closed_open(lower: T, upper: T) -> Self {
        Self::new(Bound::Included(lower), Bound::Excluded(upper))
    }
    /// Creates an interval $[l, ∞)$ `lower..` [`RangeFrom`].
    #[must_use]
    pub const fn closed_unbounded(lower: T) -> Self {
        Self::new(Bound::Included(lower), Bound::Unbounded)
    }

    // lower-open

    /// Creates an open interval $(l, u)$.
    #[must_use]
    pub const fn open(lower: T, upper: T) -> Self {
        Self::new(Bound::Excluded(lower), Bound::Excluded(upper))
    }

    /// Creates a half-open interval $(a, b]$.
    #[must_use]
    pub const fn open_closed(lower: T, upper: T) -> Self {
        Self::new(Bound::Excluded(lower), Bound::Included(upper))
    }

    /// Creates an interval $(l, ∞)$.
    #[must_use]
    pub const fn open_unbounded(lower: T) -> Self {
        Self::new(Bound::Excluded(lower), Bound::Unbounded)
    }

    // lower-unbounded

    /// Creates an unbounded interval $(-∞, ∞)$ `..` [`RangeFull`].
    #[must_use]
    pub const fn unbounded() -> Self {
        Self::new(Bound::Unbounded, Bound::Unbounded)
    }
    /// Creates an interval $(-∞, u]$ `..upper` [`RangeTo`].
    #[must_use]
    pub const fn unbounded_closed(upper: T) -> Self {
        Self::new(Bound::Unbounded, Bound::Included(upper))
    }
    /// Creates an interval $(-∞, u)$ `..=upper` [`RangeToInclusive`].
    #[must_use]
    pub const fn unbounded_open(upper: T) -> Self {
        Self::new(Bound::Unbounded, Bound::Excluded(upper))
    }
}

/// # Additional constructors
impl<T> Interval<T> {
    /// Creates a new interval with the given `lower` and `upper` bounds.
    #[must_use]
    pub const fn new(lower: Bound<T>, upper: Bound<T>) -> Self {
        Self { lower, upper }
    }

    /// Creates a single-point interval,
    /// equivalent to [`closed`][Interval::closed]`(value, value)`.
    #[must_use] #[rustfmt::skip]
    pub fn point(value: T) -> Self where T: Clone {
        Self::closed(value.clone(), value)
    }

    /// Creates a canonical empty interval,
    /// equivalent to [`open`][Interval::open]`(T::default(), T::default())`.
    #[must_use] #[rustfmt::skip]
    pub fn empty() -> Self where T: Default {
        Self::open(T::default(), T::default())
    }
    /// Creates a canonical empty interval,
    /// equivalent to [`open`][Interval::open]`(T::default(), T::default())`.
    #[must_use] #[rustfmt::skip]
    pub const fn empty_const() -> Self where T: ConstDefault {
        Self::open(T::DEFAULT, T::DEFAULT)
    }

    /// Creates a canonical empty interval,
    /// equivalent to [`open`][Interval::open]`(value, value)`.
    #[must_use] #[rustfmt::skip]
    pub fn empty_with(value: T) -> Self where T: Clone {
        Self::open(value.clone(), value)
    }
}

impl<T: Copy> Interval<T> {
    /// Returns a copy of both bounds as a tuple `(lower, upper)`.
    ///
    /// # Example
    /// ```
    /// # use devela::Interval;
    /// let r = Interval::from(1..3usize);
    /// assert_eq!("bc", &"abcd"[r.to_tuple()]);
    /// ```
    #[must_use]
    pub const fn to_tuple(self) -> (Bound<T>, Bound<T>) {
        (self.lower, self.upper)
    }
}

impl<T> Interval<T> {
    /// Returns both bounds as a tuple `(lower, upper)`.
    #[must_use]
    pub fn into_tuple(self) -> (Bound<T>, Bound<T>) {
        (self.lower, self.upper)
    }

    /// Returns a reference to both bounds as a tuple `(&lower, &upper)`.
    #[must_use]
    pub fn to_tuple_ref(&self) -> (Bound<&T>, Bound<&T>) {
        (self.lower_ref(), self.upper_ref())
    }

    /// Returns a reference to the lower bound.
    #[must_use]
    pub fn lower_ref(&self) -> Bound<&T> {
        self.lower.as_ref()
    }

    /// Returns a reference to the upper bound.
    #[must_use]
    pub fn upper_ref(&self) -> Bound<&T> {
        self.upper.as_ref()
    }

    /// Checks if the interval is both lower and upper bounded.
    #[must_use]
    pub const fn is_bounded(&self) -> bool {
        self.is_lower_bounded() && self.is_upper_bounded()
    }
    /// Checks if the lower bound is bounded.
    #[must_use]
    pub const fn is_lower_bounded(&self) -> bool {
        !matches!(self.lower, Bound::Unbounded)
    }
    /// Checks if the upper bound is bounded.
    #[must_use]
    pub const fn is_upper_bounded(&self) -> bool {
        !matches!(self.upper, Bound::Unbounded)
    }
    /// Checks if the lower bound is open (excluded).
    #[must_use]
    pub const fn is_lower_open(&self) -> bool {
        matches!(self.lower, Bound::Excluded(_))
    }
    /// Checks if the lower bound is closed (included).
    #[must_use]
    pub const fn is_lower_closed(&self) -> bool {
        matches!(self.lower, Bound::Included(_))
    }
    /// Checks if the upper bound is open (excluded).
    #[must_use]
    pub const fn is_upper_open(&self) -> bool {
        matches!(self.upper, Bound::Excluded(_))
    }
    /// Checks if the upper bound is closed (included).
    #[must_use]
    pub const fn is_upper_closed(&self) -> bool {
        matches!(self.upper, Bound::Included(_))
    }
}

impl<T: PartialOrd> Interval<T> {
    /// Checks if the interval is empty (contains no values).
    ///
    /// An interval is empty if:
    /// - The bounds exclude each other, such as `(x, x)`, `[x, x)`, or `(x, x]`.
    /// - The `lower` bound is strictly greater than the `upper` bound.
    ///
    /// Unbounded intervals are never empty.
    #[must_use]
    pub fn is_empty(&self) -> bool {
        match (&self.lower, &self.upper) {
            (Bound::Unbounded, _) | (_, Bound::Unbounded) => false,
            (Bound::Included(a), Bound::Included(b)) => a > b,
            (Bound::Included(a), Bound::Excluded(b)) => a >= b,
            (Bound::Excluded(a), Bound::Included(b)) => a >= b,
            (Bound::Excluded(a), Bound::Excluded(b)) => a >= b,
        }
    }

    /// Validates that the interval bounds are ordered correctly.
    ///
    /// Returns `true` if the lower bound is less than or equal to the upper bound.
    /// Unbounded intervals are always considered well ordered.
    #[must_use]
    pub fn is_well_ordered(&self) -> bool {
        match (&self.lower, &self.upper) {
            (Bound::Unbounded, _) | (_, Bound::Unbounded) => true,
            (Bound::Included(a), Bound::Included(b)) => a <= b,
            (Bound::Included(a), Bound::Excluded(b)) => a < b,
            (Bound::Excluded(a), Bound::Included(b)) => a < b,
            (Bound::Excluded(a), Bound::Excluded(b)) => a < b,
        }
    }

    /// Checks if the interval contains the given value.
    ///
    /// ```
    /// # use devela::Interval;
    /// let interval = Interval::closed(1, 5);
    /// assert!(interval.contains(&3));
    /// assert!(!interval.contains(&6));
    /// ```
    #[must_use]
    pub fn contains(&self, value: &T) -> bool {
        let lower_check = match &self.lower {
            Bound::Included(ref lower) => *lower <= *value,
            Bound::Excluded(ref lower) => *lower < *value,
            Bound::Unbounded => true,
        };
        let upper_check = match &self.upper {
            Bound::Included(ref upper) => *value <= *upper,
            Bound::Excluded(ref upper) => *value < *upper,
            Bound::Unbounded => true,
        };
        lower_check && upper_check
    }

    /// Returns the size of the interval, if finite.
    #[must_use]
    pub fn size(&self) -> Option<T>
    where
        T: Clone + core::ops::Sub<Output = T>,
    {
        match (&self.lower, &self.upper) {
            (Bound::Included(a), Bound::Included(b)) => {
                iif![a <= b; Some(b.clone() - a.clone()); None]
            }
            (Bound::Included(a), Bound::Excluded(b)) => {
                iif![a < b; Some(b.clone() - a.clone()); None]
            }
            (Bound::Excluded(a), Bound::Included(b)) => {
                iif![a < b; Some(b.clone() - a.clone()); None]
            }
            (Bound::Excluded(a), Bound::Excluded(b)) => {
                iif![a < b; Some(b.clone() - a.clone()); None]
            }
            _ => None, // Unbounded intervals don't have a finite size
        }
    }
}

#[rustfmt::skip]
mod impl_traits {
    use super::*;
    use crate::{
        ConstDefault, NumError, NumError::IncompatibleBounds, NumResult, Ordering, RangeBounds,
    };

    /// Provides a default value for `Interval`, the unbounded interval $(-\infty, \infty)$.
    ///
    /// This choice emphasizes neutrality and generality,
    /// where the interval encompasses all possible values of `T`. It:
    /// - Represents a neutral and maximal range for generic use cases.
    /// - Avoids reliance on [`Default`] for `T`, making it applicable to all types.
    /// - Aligns with mathematical conventions, where unbounded intervals are a natural default.
    impl<T> Default for Interval<T> {
        fn default() -> Self {
            Self::unbounded()
        }
    }
    /// Provides a *const* default value for `Interval`, the unbounded interval $(-\infty, \infty)$.
    ///
    /// See the [`Default`][Self::default] implementation for more information.
    ///
    /// See [`Default`] for more information.
    impl<T> ConstDefault for Interval<T> {
        const DEFAULT: Self = Self::unbounded();
    }

    /* infallible conversions */

    // lower-closed
    impl<T> From<RangeInclusive<T>> for Interval<T> {
        #[must_use]
        fn from(r: RangeInclusive<T>) -> Self {
            let (start, end) = r.into_inner();
            Self::closed(start, end)
        }
    }
    impl<T> From<Range<T>> for Interval<T> {
        #[must_use]
        fn from(r: Range<T>) -> Self { Self::closed_open(r.start, r.end) }
    }
    impl<T> From<RangeFrom<T>> for Interval<T> {
        #[must_use]
        fn from(r: RangeFrom<T>) -> Self { Self::closed_unbounded(r.start) }
    }
    // lower-unbounded
    impl<T> From<RangeFull> for Interval<T> {
        #[must_use]
        fn from(_: RangeFull) -> Self { Self::unbounded() }
    }
    impl<T> From<RangeTo<T>> for Interval<T> {
        #[must_use]
        fn from(r: RangeTo<T>) -> Self { Self::unbounded_closed(r.end) }
    }
    impl<T> From<RangeToInclusive<T>> for Interval<T> {
        #[must_use]
        fn from(r: RangeToInclusive<T>) -> Self { Self::unbounded_open(r.end) }
    }

    /* fallible conversions */

    // lower-closed
    /// # Errors
    /// Returns [`IncompatibleBounds`] if the bounds are not compatible.
    impl<T> TryFrom<Interval<T>> for RangeInclusive<T> {
        type Error = NumError;
        fn try_from(interval: Interval<T>) -> NumResult<Self> {
            match (interval.lower, interval.upper) {
                (Bound::Included(start), Bound::Included(end)) => Ok(start..=end),
                _ => Err(IncompatibleBounds),
            }
        }
    }
    /// # Errors
    /// Returns [`IncompatibleBounds`] if the bounds are not compatible.
    impl<T> TryFrom<Interval<T>> for Range<T> {
        type Error = NumError;
        fn try_from(interval: Interval<T>) -> NumResult<Self> {
            match (interval.lower, interval.upper) {
                (Bound::Included(start), Bound::Excluded(end)) => Ok(start..end),
                _ => Err(IncompatibleBounds),
            }
        }
    }
    /// # Errors
    /// Returns [`IncompatibleBounds`] if the bounds are not compatible.
    impl<T> TryFrom<Interval<T>> for RangeFrom<T> {
        type Error = NumError;
        fn try_from(interval: Interval<T>) -> NumResult<Self> {
            match (interval.lower, interval.upper) {
                (Bound::Included(start), Bound::Unbounded) => Ok(start..),
                _ => Err(IncompatibleBounds),
            }
        }
    }
    // lower-unbounded
    /// # Errors
    /// Returns [`IncompatibleBounds`] if the bounds are not compatible.
    impl<T> TryFrom<Interval<T>> for RangeFull {
        type Error = NumError;
        fn try_from(interval: Interval<T>) -> NumResult<Self> {
            match (interval.lower, interval.upper) {
                (Bound::Unbounded, Bound::Unbounded) => Ok(..),
                _ => Err(IncompatibleBounds),
            }
        }
    }
    /// # Errors
    /// Returns [`IncompatibleBounds`] if the bounds are not compatible.
    impl<T> TryFrom<Interval<T>> for RangeTo<T> {
        type Error = NumError;
        fn try_from(interval: Interval<T>) -> NumResult<Self> {
            match (interval.lower, interval.upper) {
                (Bound::Unbounded, Bound::Excluded(end)) => Ok(..end),
                _ => Err(IncompatibleBounds),
            }
        }
    }
    /// # Errors
    /// Returns [`IncompatibleBounds`] if the bounds are not compatible.
    impl<T> TryFrom<Interval<T>> for RangeToInclusive<T> {
        type Error = NumError;
        fn try_from(interval: Interval<T>) -> NumResult<Self> {
            match (interval.lower, interval.upper) {
                (Bound::Unbounded, Bound::Included(end)) => Ok(..=end),
                _ => Err(IncompatibleBounds),
            }
        }
    }

    /* other traits */

    impl<T> RangeBounds<T> for Interval<T> {
        fn start_bound(&self) -> Bound<&T> {
            self.lower_ref()
        }
        fn end_bound(&self) -> Bound<&T> {
            self.upper_ref()
        }
    }

    #[cfg(feature = "alloc")]
    crate::items! {
        use crate::{format, String};
        use core::fmt;

        impl<T: fmt::Display> fmt::Display for Interval<T> {
            /// Formats the interval as a human-readable string.
            ///
            /// Examples:
            /// - `(-∞, 5]` for an unbounded lower bound and inclusive upper bound.
            /// - `[1, 3)` for a closed lower bound and open upper bound.
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                let lower = match &self.lower {
                    Bound::Included(value) => format!("[{}", value),
                    Bound::Excluded(value) => format!("({}", value),
                    Bound::Unbounded => String::from("(-∞"),
                };
                let upper = match &self.upper {
                    Bound::Included(value) => format!("{}, {}]", lower, value),
                    Bound::Excluded(value) => format!("{}, {})", lower, value),
                    Bound::Unbounded => format!("{}, ∞)", lower),
                };
                write!(f, "{}", upper)
            }
        }
    }

    /// Comparison Logic:
    /// - We compare the lower bounds first.
    /// - If the lower bounds are equal, we compare the upper bounds.
    /// - We define Unbounded as less than any bounded value.
    /// - We define that Included(a) < Excluded(a) at same point a.
    impl<T: PartialOrd> PartialOrd for Interval<T> {
        fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
            match compare_bounds(&self.lower, &other.lower) {
                Some(Ordering::Equal) => compare_bounds(&self.upper, &other.upper),
                ord => ord,
            }
        }
    }
    /// Comparison Logic:
    /// - We compare the lower bounds first.
    /// - If the lower bounds are equal, we compare the upper bounds.
    /// - We define Unbounded as less than any bounded value.
    /// - We define that Included(a) < Excluded(a) at same point a.
    impl<T: Ord> Ord for Interval<T> {
        fn cmp(&self, other: &Self) -> Ordering {
            match compare_bounds_ord(&self.lower, &other.lower) {
                Ordering::Equal => compare_bounds_ord(&self.upper, &other.upper),
                ord => ord,
            }
        }
    }

    /* helpers */

    fn compare_bounds<T: PartialOrd>(a: &Bound<T>, b: &Bound<T>) -> Option<Ordering> {
        use Bound::{Excluded, Included, Unbounded};
        match (a, b) {
            (Unbounded, Unbounded) => Some(Ordering::Equal),
            (Unbounded, _) => Some(Ordering::Less),
            (_, Unbounded) => Some(Ordering::Greater),
            (Included(ref a_val), Included(ref b_val)) => a_val.partial_cmp(b_val),
            (Excluded(ref a_val), Excluded(ref b_val)) => a_val.partial_cmp(b_val),
            (Included(ref a_val), Excluded(ref b_val)) => {
                match a_val.partial_cmp(b_val) {
                    Some(Ordering::Equal) => Some(Ordering::Less),
                    ord => ord,
                }
            }
            (Excluded(ref a_val), Included(ref b_val)) => {
                match a_val.partial_cmp(b_val) {
                    Some(Ordering::Equal) => Some(Ordering::Greater),
                    ord => ord,
                }
            }
        }
    }
    fn compare_bounds_ord<T: Ord>(a: &Bound<T>, b: &Bound<T>) -> Ordering {
        use Bound::{Excluded, Included, Unbounded};
        match (a, b) {
            (Unbounded, Unbounded) => Ordering::Equal,
            (Unbounded, _) => Ordering::Less,
            (_, Unbounded) => Ordering::Greater,
            (Included(ref a_val), Included(ref b_val)) => a_val.cmp(b_val),
            (Excluded(ref a_val), Excluded(ref b_val)) => a_val.cmp(b_val),
            (Included(ref a_val), Excluded(ref b_val)) => {
                match a_val.cmp(b_val) {
                    Ordering::Equal => Ordering::Less,
                    ord => ord,
                }
            }
            (Excluded(ref a_val), Included(ref b_val)) => {
                match a_val.cmp(b_val) {
                    Ordering::Equal => Ordering::Greater,
                    ord => ord,
                }
            }
        }
    }
}