devela/num/geom/shape/extent/methods.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
// devela::num::geom::shape::extent::methods
//
//!
//
use super::{Extent, Extent2d, Extent3d};
use crate::{cfor, iif};
#[rustfmt::skip]
impl<T, const D: usize> Extent<T, D> {
/// Constructs a new `Extent` from the given dimensions.
pub const fn new(dimensions: [T; D]) -> Self {
Self { extent: dimensions }
}
/// Returns a shared reference to the extent as a slice.
#[must_use]
pub const fn as_slice(&self) -> &[T] {
&self.extent
}
/// Returns an exclusive reference to the extent as a slice.
#[must_use]
pub fn as_slice_mut(&mut self) -> &mut [T] {
&mut self.extent
}
/// Returns `true` if all dimensions of the extent are equal.
#[must_use]
pub fn is_uniform_nd(&self) -> bool where T: PartialEq {
iif![D == 0; return true];
let mut i = 1;
while i < D {
iif![self.extent[i] != self.extent[0]; return false];
i += 1;
}
true
}
}
/* manual impls for specific dimensionalities */
#[rustfmt::skip]
impl<T> Extent2d<T> {
/// Returns a copy of the first dimension `x`.
#[must_use]
pub const fn x(self) -> T where T: Copy { self.extent[0] }
/// Returns a copy of the second dimension `y`.
#[must_use]
pub const fn y(self) -> T where T: Copy { self.extent[1] }
/// Returns a shared reference to the first dimension `x`.
#[must_use]
pub const fn x_ref(&self) -> &T { &self.extent[0] }
/// Returns a shared reference to the second dimension `y`.
#[must_use]
pub const fn y_ref(&self) -> &T { &self.extent[1] }
/// Returns an exclusive reference to the first dimension `x`.
#[must_use]
pub fn x_mut(&mut self) -> &mut T { &mut self.extent[0] }
/// Returns an exclusive reference to the second dimension `y`.
#[must_use]
pub fn y_mut(&mut self) -> &mut T { &mut self.extent[1] }
/// Returns `true` if the 2 dimensions of the extent are equal.
#[must_use]
pub fn is_uniform(&self) -> bool where T: PartialEq {
self.extent[0] == self.extent[1]
}
}
#[rustfmt::skip]
impl<T> Extent3d<T> {
/// Returns a copy of the first dimension `x`.
#[must_use]
pub const fn x(self) -> T where T: Copy { self.extent[0] }
/// Returns a copy of the second dimension `y`.
#[must_use]
pub const fn y(self) -> T where T: Copy { self.extent[1] }
/// Returns a copy of the third dimension `z`.
#[must_use]
pub const fn z(self) -> T where T: Copy { self.extent[2] }
/// Returns a shared reference to the first dimension `x`.
#[must_use]
pub const fn x_ref(&self) -> &T { &self.extent[0] }
/// Returns a shared reference to the second dimension `y`.
#[must_use]
pub const fn y_ref(&self) -> &T { &self.extent[1] }
/// Returns a shared reference to the third dimension `z`.
#[must_use]
pub const fn z_ref(&self) -> &T { &self.extent[2] }
/// Returns an exclusive reference to the first dimension `x`.
#[must_use]
pub fn x_mut(&mut self) -> &mut T { &mut self.extent[0] }
/// Returns an exclusive reference to the second dimension `y`.
#[must_use]
pub fn y_mut(&mut self) -> &mut T { &mut self.extent[1] }
/// Returns an exclusive reference to the third dimension `z`.
#[must_use]
pub fn z_mut(&mut self) -> &mut T { &mut self.extent[2] }
/// Returns `true` if the 3 dimensions of the extent are equal.
#[must_use]
pub fn is_uniform_3d(&self) -> bool where T: PartialEq {
self.extent[0] == self.extent[1] && self.extent[0] == self.extent[2]
}
}
/// Implement `Extent`.
macro_rules! impl_extent {
() => {
impl_extent![sint i8, i16, i32, i64, i128, isize];
impl_extent![uint u8, u16, u32, u64, u128, usize];
impl_extent![float f32, f64];
};
// integers common methods
//
// $t: the inner integer primitive type
(int $($t:ty),+) => { $( impl_extent![@int $t]; )+ };
(@int $t:ty) => {
impl<const D: usize> Extent<$t, D> {
/// Returns the internal measure, the product of the extents.
///
/// It's equivalent to length, area, and volume in 1, 2 and 3 dimensions.
pub const fn c_measure(self) -> $t {
let mut measure = 1;
cfor!(i in 0..D => {
measure *= self.extent[i];
});
measure
}
/// Returns the external boundary, the sum of the extents.
///
/// It's equivalent to 2, perimeter and surface area in 1, 2 and 3 dimensions.
pub const fn c_boundary(self) -> $t {
let mut boundary = 0;
cfor!(i in 0..D => {
let mut face_measure = 1;
cfor!(j in 0..D => {
iif![i != j; face_measure *= self.extent[j]];
});
boundary += face_measure;
});
2 * boundary // Each dimension's contribution is counted twice
}
}
impl Extent<$t, 1> {
/// The length of the 1d extent.
#[must_use]
pub const fn c_length(self) -> $t { self.extent[0] }
}
impl Extent2d<$t> {
/// The area of the 2d extent.
#[must_use]
pub const fn c_area(self) -> $t { self.extent[0] * self.extent[1] }
/// The perimeter of the 2d extent.
#[must_use]
pub const fn c_perimeter(self) -> $t { 2 * (self.extent[0] + self.extent[1]) }
}
impl Extent3d<$t> {
/// The volume of the 3d extent.
#[must_use]
pub const fn c_volume(self) -> $t {
self.extent[0] * self.extent[1] * self.extent[2]
}
/// The surface area of the 3d extent.
#[must_use]
pub const fn c_surface_area(self) -> $t {
2 * (self.extent[0] * self.extent[1]
+ self.extent[1] * self.extent[2]
+ self.extent[2] * self.extent[0])
}
}
};
(sint $($t:ty),+) => { $( impl_extent![@sint $t]; )+ };
(@sint $t:ty ) => {
impl_extent![int $t];
};
(uint $($t:ty),+) => { $( impl_extent![@uint $t]; )+ };
(@uint $t:ty ) => {
impl_extent![int $t];
};
// $f: the inner floating-point primitive type
(float $($f:ty),+) => { $( impl_extent![@float $f]; )+ };
(@float $f:ty) => {
impl<const D: usize> Extent<$f, D> {
/// Returns the internal measure, the product of the extents.
///
/// It's equivalent to length, area, and volume in 1, 2 and 3 dimensions.
#[must_use]
pub const fn measure(self) -> $f {
let mut measure = 1.0;
cfor!(i in 0..D => {
measure *= self.extent[i];
});
measure
}
/// Returns the external boundary, the sum of the extents.
///
/// It's equivalent to 2, perimeter and surface area in 1, 2 and 3 dimensions.
#[must_use]
pub const fn boundary(self) -> $f {
let mut boundary = 0.0;
cfor!(i in 0..D => {
let mut face_measure = 1.0;
cfor!(j in 0..D => {
iif![i != j; face_measure *= self.extent[j]];
});
boundary += face_measure;
});
2.0 * boundary // Each dimension's contribution is counted twice
}
}
impl Extent<$f, 1> {
/// The length of the 1d extent.
#[must_use]
pub const fn length(self) -> $f { self.extent[0] }
}
impl Extent2d<$f> {
/// The area of the 2d extent.
#[must_use]
pub const fn area(self) -> $f { self.extent[0] * self.extent[1] }
/// The perimeter of the 2d extent.
#[must_use]
pub const fn perimeter(self) -> $f { 2.0 * (self.extent[0] + self.extent[1]) }
}
impl Extent3d<$f> {
/// The volume of the 3d extent.
#[must_use]
pub const fn volume(self) -> $f {
self.extent[0] * self.extent[1] * self.extent[2]
}
/// The surface area of the 3d extent.
#[must_use]
pub const fn surface_area(self) -> $f {
2.0 * (self.extent[0] * self.extent[1]
+ self.extent[1] * self.extent[2]
+ self.extent[2] * self.extent[0])
}
}
};
}
impl_extent![];