devela/num/geom/shape/angle/impl/int.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
// devela::num::geom::shape::angle::impl::int
//
//!
//
// IMPROVE IDEAS
// - make alternative methods that doesn't depnd on floating point operations,
// and instead use integer scaling functions Int::scale.
// - maybe use NonExtreme for the signed representation.
#[cfg(all(not(feature = "std"), _float··))]
use crate::ExtFloat;
#[cfg(_float··)]
#[allow(unused_imports)]
use crate::{fsize, ExtFloatConst};
use crate::{Angle, AngleDirection, AngleKind};
/// impl `Angle` methods with an integer representation:
///
/// # TOC
/// - integer common methods
/// - signed integers specific methods
/// - unsigned integers specific methods
///
/// # Macro arguments
/// $t: the inner integer primitive type
/// $f: the associated floating point type
/// $tcap: the capability feature that enables the given integer implementation. E.g "_int_i8".
/// $fcap: the capability feature that enables the given floating implementation. E.g "_float_f32".
macro_rules! impl_angle {
() => {
impl_angle![sint
i8:f32;"_int_i8":"_float_f32",
i16:f32;"_int_i16":"_float_f32",
i32:f32;"_int_i32":"_float_f32",
i64:f64;"_int_i64":"_float_f64",
i128:f64;"_int_i128":"_float_f64"
];
#[cfg(target_pointer_width = "32")]
impl_angle![sint isize:fsize;"_int_isize":"_float_f32"];
#[cfg(target_pointer_width = "64")]
impl_angle![sint isize:fsize;"_int_isize":"_float_f64"];
impl_angle![uint
u8:f32;"_int_u8":"_float_f32",
u16:f32;"_int_u16":"_float_f32",
u32:f32;"_int_u32":"_float_f32",
u64:f64;"_int_u64":"_float_f64",
u128:f64;"_int_u128":"_float_f64"
];
#[cfg(target_pointer_width = "32")]
impl_angle![uint usize:fsize;"_int_usize":"_float_f32"];
#[cfg(target_pointer_width = "64")]
impl_angle![uint usize:fsize;"_int_usize":"_float_f64"];
};
// integers common methods
(int $($t:ty : $f:ty ; $tcap:literal : $fcap:literal),+) => {
$( impl_angle![@int $t:$f ; $tcap:$fcap]; )+
};
(@int $t:ty : $f:ty ; $tcap:literal : $fcap:literal) => {
#[doc = concat!("# Methods for angles represented using `", stringify!($t), "`.")]
#[cfg(feature = $tcap )]
#[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $tcap)))]
impl Angle<$t> {
/* private helpers */
// Returns the inner value normalized as a float between -1 and 1
const fn to_float_normalized(self) -> $f { self.0 as $f / <$t>::MAX as $f }
// Returns the `value` associated to the full turn `unit`, scaled to the full $t range.
#[cfg(any(feature = "std", feature = $fcap))]
fn from_float_normalized(value: $f, unit: $f) -> $t {
((value / unit) * <$t>::MAX as $f).round() as $t
}
/* construct */
/// Creates a normalized full positive angle at 0 degrees.
pub const fn new_full() -> Self { Self(0) }
/// Creates a normalized right positive angle at 90 degrees.
pub const fn new_right() -> Self { Self(<$t>::MAX / 4) }
/// Creates a normalized straight positive angle at 180 degrees.
pub const fn new_straight() -> Self { Self(<$t>::MAX / 2) }
/// Creates a new angle from a floating-point `radians` value.
#[cfg(any(feature = "std", feature = $fcap))]
#[cfg_attr(feature = "nightly_doc", doc(cfg(any(feature = "std", feature = $fcap))))]
pub fn from_rad(radians: $f) -> Self {
Self(Self::from_float_normalized(radians, <$f>::TAU))
}
/// Creates a new angle from a floating-point `degrees` value.
#[cfg(any(feature = "std", feature = $fcap))]
#[cfg_attr(feature = "nightly_doc", doc(cfg(any(feature = "std", feature = $fcap))))]
pub fn from_deg(degrees: $f) -> Self {
Self(Self::from_float_normalized(degrees, 360.0))
}
/// Creates a new angle from a `value` in a `custom_unit` which represents a full turn.
#[cfg(any(feature = "std", feature = $fcap))]
#[cfg_attr(feature = "nightly_doc", doc(cfg(any(feature = "std", feature = $fcap))))]
pub fn from_custom(value: $f, custom_unit: $f) -> Self {
Self(Self::from_float_normalized(value, custom_unit))
}
/* convert */
/// Converts the angle to radians.
#[must_use]
#[cfg(any(feature = "std", _float··))]
#[cfg_attr(feature = "nightly_doc", doc(cfg(any(feature = "std", _float··))))]
pub const fn to_rad(self) -> $f { self.to_float_normalized() * <$f>::TAU }
/// Converts the angle to degrees.
#[must_use]
pub const fn to_deg(self) -> $f { self.to_float_normalized() * 360.0 }
/// Converts the angle to a `custom_unit` which represents a full turn.
#[must_use]
pub const fn to_custom(self, custom_unit: $f) -> $f {
self.to_float_normalized() * custom_unit
}
/* normalize */
/// Always returns `true` since integer representations are always normalized.
#[must_use]
pub const fn is_normalized(self) -> bool { true }
/// Returns the angle normalized (no-op for integer representation).
pub const fn normalize(self) -> Self { self }
/// Sets the angle normalized (no-op for integer representation).
pub fn set_normalized(&mut self) {}
/// Returns `true` if the angle has the given `direction`.
#[must_use ]
pub const fn has_direction(self, direction: AngleDirection) -> bool {
direction as i8 == self.direction() as i8
}
/* kind */
/// Returns the kind of the normalized angle.
pub const fn kind(self) -> AngleKind {
let angle = self.positive().0;
let right = <$t>::MAX / 4;
let straight = <$t>::MAX / 2;
use AngleKind as K;
if angle == 0 { // 1 turn (0' or 360º)
K::Full
} else if angle == right { // 1/4 turn (90º)
K::Right
} else if angle == straight { // 1/2 turn (180º)
K::Straight
//
} else if angle < right { // < 1/4 turn (< 90º)
K::Acute
} else if angle < straight { // < 1/2 turn (< 180º)
K::Obtuse
} else { // < 1 turn (< 360º)
K::Reflex
}
}
/// Returns `true` if the angle is of the given `kind`.
#[must_use]
pub const fn is_kind(self, kind: AngleKind) -> bool {
let angle = self.positive().0;
let right = <$t>::MAX / 4;
let straight = <$t>::MAX / 2;
use AngleKind as K;
match kind {
K::Full => angle == 0,
K::Right => angle == right,
K::Straight => angle == straight,
//
K::Acute => angle > 0 && angle < right,
K::Obtuse => angle < right && angle < straight,
K::Reflex => angle > right,
}
}
}
};
// signed integers specific methods
(sint $($t:ty : $f:ty ; $tcap:literal : $fcap:literal),+) => {
$( impl_angle![@sint $t:$f ; $tcap:$fcap]; )+
};
(@sint $t:ty : $f:ty ; $tcap:literal : $fcap:literal) => {
impl_angle![int $t:$f ; $tcap:$fcap];
#[doc = concat!("# Methods for angles represented using `", stringify!($t), "`, signed.")]
#[cfg(feature = $tcap )]
#[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $tcap)))]
impl Angle<$t> {
/* direction */
/// Returns the angle direction.
///
/// The direction will be `Undefined` if the angle kind is [`Full`][AngleKind::Full].
pub const fn direction(self) -> AngleDirection {
use AngleDirection as D;
if self.0 == 0 {
D::Undefined
} else if self.0 > 0 {
D::CounterClockwise
} else {
D::Clockwise
}
}
/// Returns a version of the angle with the given `direction`.
///
/// An `Undefined` direction will be interpreted as counter-clockwise (positive).
pub const fn with_direction(self, direction: AngleDirection) -> Self {
use AngleDirection as D;
match direction {
D::CounterClockwise | D::Undefined => Self(self.0.saturating_abs()),
D::Clockwise => Self(-self.0.saturating_abs()),
}
}
/// Returns a version of the angle with the given `direction`.
///
/// An `Undefined` direction will be interpreted as counter-clockwise (positive).
pub fn set_direction(&mut self, direction: AngleDirection) {
use AngleDirection as D;
match direction {
D::CounterClockwise | D::Undefined => self.0 = self.0.saturating_abs(),
D::Clockwise => self.0 = -self.0.saturating_abs(),
}
}
/// Returns a version of the angle with inverted direction.
pub const fn invert_direction(self) -> Self {
Self(self.0.saturating_neg())
}
/// Returns the negative version of the angle.
pub const fn negative(self) -> Self { Self(-self.0.saturating_abs()) }
/// Sets the angle as negative.
pub fn set_negative(&mut self) { self.0 = -self.0.saturating_abs(); }
/// Returns the positive version of the angle.
pub const fn positive(self) -> Self { Self(self.0.saturating_abs()) }
/// Sets the angle as positive.
pub fn set_positive(&mut self) { self.0 = self.0.saturating_abs(); }
}
};
// unsigned integers specific methods
(uint $($t:ty : $f:ty ; $tcap:literal : $fcap:literal),+) => {
$( impl_angle![@uint $t:$f ; $tcap:$fcap]; )+
};
(@uint $t:ty : $f:ty ; $tcap:literal : $fcap:literal) => {
impl_angle![int $t:$f ; $tcap:$fcap];
#[doc = concat!("# Methods for angles represented using `", stringify!($t), "`, unsigned.")]
#[cfg(feature = $tcap )]
#[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $tcap)))]
impl Angle<$t> {
/* direction */
/// Returns the angle direction.
///
/// For unsigned integers the direction is always `CounterClockwise`.
pub const fn direction(self) -> AngleDirection { AngleDirection::CounterClockwise }
/// Returns a version of the angle with the given `direction` (no-op for unsigned).
///
/// Unsigned integers can only have `CounterClockwise` direction.
pub const fn with_direction(self, _direction: AngleDirection) -> Self { self }
/// Returns a version of the angle with the given `direction` (no-op for unsigned).
///
/// Unsigned integers can only have `CounterClockwise` direction.
pub const fn set_direction(self, _direction: AngleDirection) {}
/// Returns a version of the angle with inverted direction (no-op for unsigned).
///
/// Unsigned integers can only have `CounterClockwise` direction.
pub const fn invert_direction(self) -> Self { self }
/// Returns the negative version of the angle (no-op for unsigned).
pub const fn negative(self) -> Self { self }
/// Sets the angle as negative (no-op for unsigned).
pub fn set_negative(&mut self) {}
/// Returns the positive version of the angle (no-op for unsigned).
pub const fn positive(self) -> Self { self }
/// Sets the angle as positive (no-op for unsigned).
pub fn set_positive(&mut self) {}
}
};
}
impl_angle!();