devela/num/alg/linear/vector/array/
methods.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// devela::num::alg::linear::vector::array::methods
//
//! impl methods for Vector
//

#[allow(unused_imports)]
#[cfg(all(not(feature = "std"), _float··))]
use crate::ExtFloat;
use crate::Vector;
use crate::{concat as cc, stringify as fy};
#[cfg(_int··)]
use crate::{unwrap, Int};

/* common methods */

impl<T, const D: usize> Vector<T, D> {
    /// Returns a new `Vector` from the given `coords` array.
    pub const fn new(coords: [T; D]) -> Self {
        Self { coords }
    }
}

/* compile-time ops for primitives */

/// helper for implementing methods on `Vector`.
///
/// $t: the inner integer primitive type
/// $cap: the capability feature that enables the given implementation. E.g "_int_i8".
/// $cmp: the optional feature that enables the given implementation. E.g "_cmp_i8".
macro_rules! impl_vector {
    () => {
        impl_vector![sint
            i8:"_int_i8":"_cmp_i8",
            i16:"_int_i16":"_cmp_i16",
            i32:"_int_i32":"_cmp_i32",
            i64:"_int_i64":"_cmp_i64",
            i128:"_int_i128":"_cmp_i128",
            isize:"_int_isize":"_cmp_isize"
        ];
        impl_vector![uint
            u8:"_int_u8":"_cmp_u8",
            u16:"_int_u16":"_cmp_u16",
            u32:"_int_u32":"_cmp_u32",
            u64:"_int_u64":"_cmp_u64",
            u128:"_int_u128":"_cmp_u128",
            usize:"_int_usize" // no _cmp_usize
        ];
        impl_vector![float
            f32:"_float_f32":"_cmp_f32",
            f64:"_float_f64":"_cmp_f64"
        ];
    };

    // integers common methods
    (int $($t:ty : $cap:literal $(: $cmp:literal)? ),+) => {
        $( impl_vector![@int $t:$cap $(:$cmp)? ]; )+
    };
    (@int $t:ty : $cap:literal $(: $cmp:literal)? ) => {
        #[doc = cc!("# Methods for vectors represented using `", fy!($t), "`.")]
        #[cfg(feature = $cap )]
        #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
        impl<const D: usize> Vector<$t, D> {
            /// A `Vector` with all ones.
            pub const ONE: Self = Self::new([1; D]);

            /// A `Vector` with all zeros.
            pub const ZERO: Self = Self::new([0; D]);

            /* ops with vector */

            /// Returns the normalized vector, using the given vector `magnitude`.
            ///
            /// $$
            /// \bm{n} = \widehat{\bm{a}} = \frac{1}{d}\thinspace\bm{a} =
            /// \frac{\bm{a}}{|\bm{a}|}
            /// $$
            pub const fn c_normalize_with(self, magnitude: $t) -> Self {
                let mut normalized = [0; D];
                let mut i = 0;
                while i < D {
                    normalized[i] = self.coords[i] / magnitude;
                    i += 1;
                }
                Vector { coords: normalized }
            }

            /// Calculates the magnitude of the vector (squared).
            ///
            /// This is faster than calculating the magnitude,
            /// which is useful for comparisons.
            ///
            /// # Formula
            /// $$ \large |\vec{V}|^2 = V_0^2 + ... + V_n^2 $$
            pub const fn c_magnitude_sq(self) -> $t { self.c_dot(self) }

            /// Adds two vectors together, in compile-time.
            pub const fn c_add(self, other: Self) -> Self {
                let mut result = [0; D];
                let mut i = 0;
                while i < D {
                    result[i] = self.coords[i] + other.coords[i];
                    i += 1;
                }
                Vector::new(result)
            }

            /// Subtracts another vector from this vector, in compile-time.
            pub const fn c_sub(self, other: Self) -> Self {
                let mut result = [0; D];
                let mut i = 0;
                while i < D {
                    result[i] = self.coords[i] - other.coords[i];
                    i += 1;
                }
                Vector::new(result)
            }

            /// Computes the dot product of two vectors, in compile-time.
            pub const fn c_dot(self, other: Self) -> $t {
                let mut result = 0;
                let mut i = 0;
                while i < D {
                    result += self.coords[i] * other.coords[i];
                    i += 1;
                }
                result
            }

            /* ops with scalar */

            /// Multiplies each element of the vector by a scalar, in compile-time.
            pub const fn c_scalar_mul(self, scalar: $t) -> Self {
                let mut result = [0; D];
                let mut i = 0;
                while i < D {
                    result[i] = self.coords[i] * scalar;
                    i += 1;
                }
                Vector::new(result)
            }

            /// Divides each element of the vector by a scalar, in compile-time.
            pub const fn c_scalar_div(self, scalar: $t) -> Self {
                let mut result = [0; D];
                let mut i = 0;
                while i < D {
                    result[i] = self.coords[i] / scalar;
                    i += 1;
                }
                Vector::new(result)
            }
        }

        #[doc = cc!("# Methods for 3d vectors represented using `", fy!($t), "`.")]
        impl Vector<$t, 3> {
            /// Computes the cross product of two vectors.
            ///
            /// That is the vector orthogonal to both vectors.
            ///
            /// Also known as the *exterior product* or the *vector product*.
            ///
            /// It is only defined for 3-dimensional vectors, and it is not
            /// commutative: $\vec{a}\times\vec{b} = -(\vec{b}\times\vec{a})$.
            ///
            /// # Formula
            /// $$
            /// \bm{a} \times \bm{b} =
            /// \begin{bmatrix} a_x \cr a_y \cr a_z \end{bmatrix} \times
            /// \begin{bmatrix} b_x \cr b_y \cr b_z \end{bmatrix} =
            /// \begin{bmatrix}
            ///     a_y b_z - a_z b_y \cr
            ///     a_z b_x - a_x b_z \cr
            ///     a_x b_y - a_y b_x
            /// \end{bmatrix}
            /// $$
            pub const fn c_cross(self, other: Self) -> Self {
                let cross_product = [
                    self.coords[1] * other.coords[2] - self.coords[2] * other.coords[1], // i
                    self.coords[2] * other.coords[0] - self.coords[0] * other.coords[2], // j
                    self.coords[0] * other.coords[1] - self.coords[1] * other.coords[0], // k
                ];
                Vector::new(cross_product)
            }
        }
    };

    // signed integers specific methods
    (sint $($t:ty : $cap:literal $(: $cmp:literal)? ),+) => {
        $( impl_vector![@sint $t:$cap $(:$cmp)? ]; )+
    };
    (@sint $t:ty : $cap:literal $(: $cmp:literal)? ) => {
        impl_vector![int $t:$cap $(:$cmp)? ];

        #[doc = cc!("# Methods for vectors represented using `", fy!($t), "`, signed.")]
        #[cfg(feature = $cap )]
        #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
        impl<const D: usize> Vector<$t, D> {
            /// A `Vector` with all negative ones.
            pub const NEG_ONE: Self = Self::new([-1; D]);

            /// Calculates the floored magnitude of the vector.
            ///
            /// It could underestimate the true magnitude.
            $(
            /// # Features
            #[doc = cc!("This will only be *const* if the ", fy!($cmp), " feature is enabled.")]
            #[cfg(feature = $cmp)]
            )? // $cmp
            pub const fn c_magnitude_floor(self) -> $t {
                unwrap![ok Int(self.c_dot(self).abs()).sqrt_floor()].0
            }
            $( // $cmp
            #[cfg(not(feature = $cmp))] #[allow(missing_docs)]
            pub fn c_magnitude_floor(self) -> $t {
                unwrap![ok Int(self.c_dot(self).abs()).sqrt_floor()].0
            }
            )?

            /// Calculates the ceiled magnitude of the vector.
            ///
            /// It could overestimate the true magnitude.
            $(
            /// # Features
            #[doc = cc!("This will only be *const* if the ", fy!($cmp), " feature is enabled.")]
            #[cfg(feature = $cmp)]
            )? // $cmp
            pub const fn c_magnitude_ceil(self) -> $t {
                unwrap![ok Int(self.c_dot(self).abs()).sqrt_ceil()].0
            }
            $( // $cmp
            #[cfg(not(feature = $cmp))] #[allow(missing_docs)]
            pub fn c_magnitude_ceil(self) -> $t {
                unwrap![ok Int(self.c_dot(self).abs()).sqrt_ceil()].0
            }
            )?

            /// Calculates the rounded magnitude of the vector.
            /// # Panics
            /// Can panic if we reach a `i128` value close to its maximum during operations.
            pub const fn c_magnitude_round(self) -> $t {
                unwrap![ok Int(self.c_dot(self).abs()).sqrt_round()].0
            }
        }
    };

    // unsigned integers specific methods
    (uint $($t:ty : $cap:literal $(: $cmp:literal)? ),+) => {
        $( impl_vector![@uint $t:$cap $(:$cmp)? ]; )+
    };
    (@uint $t:ty : $cap:literal $(: $cmp:literal)? ) => {
        impl_vector![int $t:$cap $(:$cmp)? ];

        #[doc = cc!("# Methods for vectors represented using `", fy!($t), "`, unsigned.")]
        #[cfg(feature = $cap )]
        #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
        impl<const D: usize> Vector<$t, D> {
            /// Calculates the floored magnitude of the vector.
            ///
            /// It could underestimate the true magnitude.
            $(
            /// # Features
            #[doc = cc!("This will only be *const* if the ", fy!($cmp), " feature is enabled.")]
            #[cfg(feature = $cmp)]
            )? // $cmp
            pub const fn c_magnitude_floor(self) -> $t {
                Int(self.c_dot(self)).sqrt_floor().0
            }
            $( // $cmp
            #[cfg(not(feature = $cmp))] #[allow(missing_docs)]
            pub fn c_magnitude_floor(self) -> $t {
                Int(self.c_dot(self)).sqrt_floor().0
            }
            )?

            /// Calculates the ceiled magnitude of the vector.
            ///
            /// It could overestimate the true magnitude.
            $(
            /// # Features
            #[doc = cc!("This will only be *const* if the ", fy!($cmp), " feature is enabled.")]
            #[cfg(feature = $cmp)]
            )? // $cmp
            pub const fn c_magnitude_ceil(self) -> $t {
                Int(self.c_dot(self)).sqrt_ceil().0
            }
            $( // $cmp
            #[cfg(not(feature = $cmp))] #[allow(missing_docs)]
            pub fn c_magnitude_ceil(self) -> $t {
                Int(self.c_dot(self)).sqrt_ceil().0
            }
            )?

            /// Calculates the rounded magnitude of the vector.
            /// # Panics
            /// Can panic if we reach a `u128` value close to its maximum during operations.
            pub const fn c_magnitude_round(self) -> $t {
                unwrap![ok Int(self.c_dot(self)).sqrt_round()].0
            }
        }
    };

    // $f: the inner floating-point primitive type
    (float $($f:ty : $cap:literal $(: $cmp:literal)? ),+) => {
        $( impl_vector![@float $f:$cap $(:$cmp)? ]; )+
    };
    (@float $f:ty : $cap:literal $(: $cmp:literal)? ) => {
        #[doc = cc!("# Methods for vectors represented using `", fy!($f), "`.")]
        #[cfg(feature = $cap )]
        #[cfg_attr(feature = "nightly_doc", doc(cfg(feature = $cap)))]
        impl<const D: usize> Vector<$f, D> {
            /// A `Vector` with all ones.
            pub const ONE: Self = Self::new([1.0; D]);
            /// A `Vector` with all zeros.
            pub const ZERO: Self = Self::new([0.0; D]);
            /// A `Vector` with all negative ones.
            pub const NEG_ONE: Self = Self::new([-1.0; D]);

            /// Returns the normalized vector, as a *unit vector*.
            ///
            /// $$
            /// \bm{n} = \widehat{\bm{a}} = \frac{1}{d}\thinspace\bm{a} =
            /// \frac{\bm{a}}{|\bm{a}|}
            /// $$
            pub fn normalize(&self) -> Self {
                let mag = self.magnitude();
                let mut normalized = [0.0; D];
                for i in 0..D {
                    normalized[i] = self.coords[i] / mag;
                }
                Vector { coords: normalized }
            }

            /// Calculates the magnitude of the vector.
            ///
            /// # Formula
            /// $$ \large |\vec{V}| = \sqrt{V_0^2 + ... + V_n^2} $$
            pub fn magnitude(self) -> $f { self.dot(self).sqrt() }

            /// Calculates the squared magnitude of the vector.
            ///
            /// This is faster than calculating the magnitude,
            /// which is useful for comparisons.
            ///
            /// # Formula
            /// $$ \large |\vec{V}|^2 = V_0^2 + ... + V_n^2 $$
            pub fn magnitude_sq(self) -> $f { self.dot(self) }

            /// Adds two vectors together.
            #[allow(clippy::should_implement_trait)]
            pub fn add(self, other: Self) -> Self {
                let mut result = [0.0; D];
                let mut i = 0;
                while i < D {
                    result[i] = self.coords[i] + other.coords[i];
                    i += 1;
                }
                Vector::new(result)
            }

            /// Subtracts another vector from this vector.
            #[allow(clippy::should_implement_trait)]
            pub fn sub(self, other: Self) -> Self {
                let mut result = [0.0; D];
                let mut i = 0;
                while i < D {
                    result[i] = self.coords[i] - other.coords[i];
                    i += 1;
                }
                Vector::new(result)
            }

            /// Computes the dot product of two vectors.
            ///
            /// That is the magnitude of one vector in the direction of another.
            ///
            /// Also known as the *inner produc* or the *scalar product*.
            ///
            /// # Formula
            /// $$
            /// \large \vec{a}\cdot\vec{b} =
            /// \begin{bmatrix} a_0 \cr ... \cr a_n \end{bmatrix} \cdot
            /// \begin{bmatrix} b_0 \cr ... \cr b_n \end{bmatrix} =
            /// a_0 b_0 + ... + a_n b_n
            /// $$
            pub fn dot(self, other: Self) -> $f {
                let mut result = 0.0;
                let mut i = 0;
                while i < D {
                    result += self.coords[i] * other.coords[i];
                    i += 1;
                }
                result
            }
        }

        #[doc = cc!("# Methods for 3d vectors represented using `", fy!($f), "`.")]
        impl Vector<$f, 3> {
            /// Computes the cross product of two vectors.
            ///
            /// That is the vector orthogonal to both vectors.
            ///
            /// Also known as the *exterior product* or the *vector product*.
            ///
            /// It is only defined for 3-dimensional vectors, and it is not
            /// commutative: $\vec{a}\times\vec{b} = -(\vec{b}\times\vec{a})$.
            ///
            /// # Formula
            /// $$
            /// \bm{a} \times \bm{b} =
            /// \begin{bmatrix} a_x \cr a_y \cr a_z \end{bmatrix} \times
            /// \begin{bmatrix} b_x \cr b_y \cr b_z \end{bmatrix} =
            /// \begin{bmatrix}
            ///     a_y b_z - a_z b_y \cr
            ///     a_z b_x - a_x b_z \cr
            ///     a_x b_y - a_y b_x
            /// \end{bmatrix}
            /// $$
            pub fn cross(self, other: Self) -> Self {
                let cross_product = [
                    self.coords[1] * other.coords[2] - self.coords[2] * other.coords[1], // i
                    self.coords[2] * other.coords[0] - self.coords[0] * other.coords[2], // j
                    self.coords[0] * other.coords[1] - self.coords[1] * other.coords[0], // k
                ];
                Vector::new(cross_product)
            }
        }
    };
}
impl_vector!();